These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 33540582)
21. XoxF Acts as the Predominant Methanol Dehydrogenase in the Type I Methanotroph Methylomicrobium buryatense. Chu F; Lidstrom ME J Bacteriol; 2016 Apr; 198(8):1317-25. PubMed ID: 26858104 [TBL] [Abstract][Full Text] [Related]
22. Methanol Dehydrogenases as a Key Biocatalysts for Synthetic Methylotrophy. Le TK; Lee YJ; Han GH; Yeom SJ Front Bioeng Biotechnol; 2021; 9():787791. PubMed ID: 35004648 [TBL] [Abstract][Full Text] [Related]
23. Engineering Artificial Fusion Proteins for Enhanced Methanol Bioconversion. Fan L; Wang Y; Tuyishime P; Gao N; Li Q; Zheng P; Sun J; Ma Y Chembiochem; 2018 Dec; 19(23):2465-2471. PubMed ID: 30246938 [TBL] [Abstract][Full Text] [Related]
24. C1 Compound Biosensors: Design, Functional Study, and Applications. Lee JY; Sung BH; Oh SH; Kwon KK; Lee H; Kim H; Lee DH; Yeom SJ; Lee SG Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31067766 [TBL] [Abstract][Full Text] [Related]
25. Partial oxidative conversion of methane to methanol through selective inhibition of methanol dehydrogenase in methanotrophic consortium from landfill cover soil. Han JS; Ahn CM; Mahanty B; Kim CG Appl Biochem Biotechnol; 2013 Nov; 171(6):1487-99. PubMed ID: 23963715 [TBL] [Abstract][Full Text] [Related]
26. [Properties of modified amperometric biosensors based on methanol dehydrogenase and Methylobacterium nodulans cells]. Kuznetsova TA; Beschastnyĭ AP; Alferov SV; Trotsenko IuA Prikl Biokhim Mikrobiol; 2013; 49(6):613-8. PubMed ID: 25434185 [TBL] [Abstract][Full Text] [Related]
27. Pyrroloquinoline Quinone Ethanol Dehydrogenase in Methylobacterium extorquens AM1 Extends Lanthanide-Dependent Metabolism to Multicarbon Substrates. Good NM; Vu HN; Suriano CJ; Subuyuj GA; Skovran E; Martinez-Gomez NC J Bacteriol; 2016 Nov; 198(22):3109-3118. PubMed ID: 27573017 [TBL] [Abstract][Full Text] [Related]
28. Upregulated transcription of plasmid and chromosomal ribulose monophosphate pathway genes is critical for methanol assimilation rate and methanol tolerance in the methylotrophic bacterium Bacillus methanolicus. Jakobsen ØM; Benichou A; Flickinger MC; Valla S; Ellingsen TE; Brautaset T J Bacteriol; 2006 Apr; 188(8):3063-72. PubMed ID: 16585766 [TBL] [Abstract][Full Text] [Related]
29. Genomic characterization of methylotrophy of Oharaeibacter diazotrophicus strain SM30 Lv H; Tani A J Biosci Bioeng; 2018 Dec; 126(6):667-675. PubMed ID: 29914801 [TBL] [Abstract][Full Text] [Related]
30. Plasmid-dependent methylotrophy in thermotolerant Bacillus methanolicus. Brautaset T; Jakobsen M ØM; Flickinger MC; Valla S; Ellingsen TE J Bacteriol; 2004 Mar; 186(5):1229-38. PubMed ID: 14973041 [TBL] [Abstract][Full Text] [Related]
31. In vitro activation of NAD-dependent alcohol dehydrogenases by Nudix hydrolases is more widespread than assumed. Ochsner AM; Müller JE; Mora CA; Vorholt JA FEBS Lett; 2014 Aug; 588(17):2993-9. PubMed ID: 24928437 [TBL] [Abstract][Full Text] [Related]
32. Environmental regulation of alcohol metabolism in thermotolerant methylotrophic Bacillus strains. Arfman N; de Vries KJ; Moezelaar HR; Attwood MM; Robinson GK; van Geel M; Dijkhuizen L Arch Microbiol; 1992; 157(3):272-8. PubMed ID: 1510560 [TBL] [Abstract][Full Text] [Related]
33. Functional investigation of methanol dehydrogenase-like protein XoxF in Methylobacterium extorquens AM1. Schmidt S; Christen P; Kiefer P; Vorholt JA Microbiology (Reading); 2010 Aug; 156(Pt 8):2575-2586. PubMed ID: 20447995 [TBL] [Abstract][Full Text] [Related]
34. Characterization of a novel methanol dehydrogenase in representatives of Burkholderiales: implications for environmental detection of methylotrophy and evidence for convergent evolution. Kalyuzhnaya MG; Hristova KR; Lidstrom ME; Chistoserdova L J Bacteriol; 2008 Jun; 190(11):3817-23. PubMed ID: 18390659 [TBL] [Abstract][Full Text] [Related]
35. Engineering the bioconversion of methane and methanol to fuels and chemicals in native and synthetic methylotrophs. Bennett RK; Steinberg LM; Chen W; Papoutsakis ET Curr Opin Biotechnol; 2018 Apr; 50():81-93. PubMed ID: 29216497 [TBL] [Abstract][Full Text] [Related]
36. Directed evolution of leucine dehydrogenase for improved efficiency of L-tert-leucine synthesis. Zhu L; Wu Z; Jin JM; Tang SY Appl Microbiol Biotechnol; 2016 Jul; 100(13):5805-13. PubMed ID: 26898942 [TBL] [Abstract][Full Text] [Related]
37. Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate. Leßmeier L; Pfeifenschneider J; Carnicer M; Heux S; Portais JC; Wendisch VF Appl Microbiol Biotechnol; 2015 Dec; 99(23):10163-76. PubMed ID: 26276544 [TBL] [Abstract][Full Text] [Related]
38. Identification of a magnesium-dependent NAD(P)(H)-binding domain in the nicotinoprotein methanol dehydrogenase from Bacillus methanolicus. Hektor HJ; Kloosterman H; Dijkhuizen L J Biol Chem; 2002 Dec; 277(49):46966-73. PubMed ID: 12351635 [TBL] [Abstract][Full Text] [Related]
40. Mycofactocin is essential for the establishment of methylotrophy in Mycobacterium smegmatis. Dubey AA; Jain V Biochem Biophys Res Commun; 2019 Sep; 516(4):1073-1077. PubMed ID: 31279528 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]