These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 33540670)

  • 1. Middle-Scale Ionospheric Disturbances Observed by the Oblique-Incidence Ionosonde Detection Network in North China after the 2011 Tohoku Tsunamigenic Earthquake.
    Wang J; Chen G; Yu T; Deng Z; Yan X; Yang N
    Sensors (Basel); 2021 Feb; 21(3):. PubMed ID: 33540670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-Term Observation of the Quasi-3-Hour Large-Scale Traveling Ionospheric Disturbances by the Oblique-Incidence Ionosonde Network in North China.
    Zhang R; Chen G; Li Y; Zhang S; Gong W; He Z; Zhang M
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-Time Detection of Tsunami Ionospheric Disturbances with a Stand-Alone GNSS Receiver: A Preliminary Feasibility Demonstration.
    Savastano G; Komjathy A; Verkhoglyadova O; Mazzoni A; Crespi M; Wei Y; Mannucci AJ
    Sci Rep; 2017 Apr; 7():46607. PubMed ID: 28429754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tsunami detection by GPS-derived ionospheric total electron content.
    Shrivastava MN; Maurya AK; Gonzalez G; Sunil PS; Gonzalez J; Salazar P; Aranguiz R
    Sci Rep; 2021 Jun; 11(1):12978. PubMed ID: 34155312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A New Method to Improve the Detection of Co-Seismic Ionospheric Disturbances using Sequential Measurement Combination.
    Kang S; Song J; Han D; Kim B; So H; Kim KJ; Kee C
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31277404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of GIM-TEC disturbances before M ≥ 6.0 inland earthquakes during 2003-2017.
    Zhu F; Jiang Y
    Sci Rep; 2020 Oct; 10(1):18038. PubMed ID: 33093593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of possible ionospheric precursor caused by Papua New Guinea earthquake (Mw 7.5).
    Ulukavak M; Inyurt S
    Environ Monit Assess; 2020 Feb; 192(3):190. PubMed ID: 32078061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on co-seismic ionospheric disturbance of Alaska earthquake on July 29, 2021 based on GPS TEC.
    Ruan Q; Yuan X; Liu H; Ge S
    Sci Rep; 2023 Jul; 13(1):10679. PubMed ID: 37393363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A possible space-based tsunami early warning system using observations of the tsunami ionospheric hole.
    Kamogawa M; Orihara Y; Tsurudome C; Tomida Y; Kanaya T; Ikeda D; Gusman AR; Kakinami Y; Liu JY; Toyoda A
    Sci Rep; 2016 Dec; 6():37989. PubMed ID: 27905487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Airglow-imager based observation of possible influences of subtropical mesospheric gravity waves on F-region ionosphere over Jammu & Kashmir, India.
    Ramkumar TK; Malik MA; Ganaie BA; Bhat AH
    Sci Rep; 2021 May; 11(1):10168. PubMed ID: 33986403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Application of Wuhan Ionospheric Oblique Backscattering Sounding System with the Addition of an Antenna Array (WIOBSS-AA).
    Cui X; Chen G; Wang J; Song H; Gong W
    Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27314360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determining spatio-temporal characteristics of coseismic travelling ionospheric disturbances (CTID) in near real-time.
    Maletckii B; Astafyeva E
    Sci Rep; 2021 Oct; 11(1):20783. PubMed ID: 34675366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Ionospheric Disturbances Caused by the 2018 Bering Sea Meteor Explosion Based on GPS Observations.
    Luo Y; Yao Y; Shan L
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32512925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance evaluation of IRI-Plas 2017 model with ionosonde data measurements of ionospheric parameters.
    Endeshaw L; Seyoum A
    Heliyon; 2023 Nov; 9(11):e21911. PubMed ID: 38034718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface waves magnitude estimation from ionospheric signature of Rayleigh waves measured by Doppler sounder and OTH radar.
    Occhipinti G; Aden-Antoniow F; Bablet A; Molinie JP; Farges T
    Sci Rep; 2018 Jan; 8(1):1555. PubMed ID: 29367666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionospheric GNSS Imagery of Seismic Source: Possibilities, Difficulties, and Challenges.
    Astafyeva E; Shults K
    J Geophys Res Space Phys; 2019 Jan; 124(1):534-543. PubMed ID: 31008005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid identification of tsunamigenic earthquakes using GNSS ionospheric sounding.
    Manta F; Occhipinti G; Feng L; Hill EM
    Sci Rep; 2020 Jul; 10(1):11054. PubMed ID: 32632250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implementation of an Electronic Ionosonde to Monitor the Earth's Ionosphere via a Projected Column through USRP.
    Barona Mendoza JJ; Quiroga Ruiz CF; Pinedo Jaramillo CR
    Sensors (Basel); 2017 Apr; 17(5):. PubMed ID: 28441329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gravity Wave Activity in the Stratosphere before the 2011 Tohoku Earthquake as the Mechanism of Lithosphere-atmosphere-ionosphere Coupling.
    Yang SS; Hayakawa M
    Entropy (Basel); 2020 Jan; 22(1):. PubMed ID: 33285884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Ionospheric view of the 2011 Tohoku-Oki earthquake seismic source: the first 60 seconds of the rupture.
    Bagiya MS; Thomas D; Astafyeva E; Bletery Q; Lognonné P; Ramesh DS
    Sci Rep; 2020 Mar; 10(1):5232. PubMed ID: 32251306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.