These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 33540678)

  • 1. Utilization of Electrical Impedance Spectroscopy and Image Classification for Non-Invasive Early Assessment of Meat Freshness.
    Huh S; Kim HJ; Lee S; Cho J; Jang A; Bae J
    Sensors (Basel); 2021 Feb; 21(3):. PubMed ID: 33540678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of fish freshness using impedance spectroscopy based on the characteristic parameter of orthogonal direction difference.
    Sun J; Zhang R; Zhang Y; Liang Q; Zhang F; Xu P; Li G
    J Sci Food Agric; 2020 Aug; 100(11):4124-4131. PubMed ID: 32329072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-destructive determination of chemical and microbial spoilage indicators of beef for freshness evaluation using front-face synchronous fluorescence spectroscopy.
    Liu H; Ji Z; Liu X; Shi C; Yang X
    Food Chem; 2020 Aug; 321():126628. PubMed ID: 32259731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-destructive prediction of thiobarbituricacid reactive substances (TBARS) value for freshness evaluation of chicken meat using hyperspectral imaging.
    Xiong Z; Sun DW; Pu H; Xie A; Han Z; Luo M
    Food Chem; 2015 Jul; 179():175-81. PubMed ID: 25722152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Meat and Fish Freshness Assessment by a Portable and Simplified Electronic Nose System (Mastersense).
    Grassi S; Benedetti S; Opizzio M; Nardo ED; Buratti S
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31336675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of the Freshness State of Cooked Beef During Storage Using Hyperspectral Imaging.
    Yang D; He D; Lu A; Ren D; Wang J
    Appl Spectrosc; 2017 Oct; 71(10):2286-2301. PubMed ID: 28627234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid and non-destructive spectroscopic method for classifying beef freshness using a deep spectral network fused with myoglobin information.
    Shin S; Lee Y; Kim S; Choi S; Kim JG; Lee K
    Food Chem; 2021 Aug; 352():129329. PubMed ID: 33684719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the freshness of meat by using quantum-behaved particle swarm optimization and support vector machine.
    Guan X; Liu J; Huang Q; Li J
    J Food Prot; 2013 Nov; 76(11):1916-22. PubMed ID: 24215696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid evaluation of quality deterioration and freshness of beef during low temperature storage using three-dimensional fluorescence spectroscopy.
    Liu H; Saito Y; Riza DFA; Kondo N; Yang X; Han D
    Food Chem; 2019 Jul; 287():369-374. PubMed ID: 30857712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility study on nondestructively sensing meat's freshness using light scattering imaging technique.
    Li H; Sun X; Pan W; Kutsanedzie F; Zhao J; Chen Q
    Meat Sci; 2016 Sep; 119():102-9. PubMed ID: 27155320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbiological and physicochemical parameters for predicting quality of fat and low-fat raw ground beef during refrigerated aerobic storage.
    Valerio F; Skandamis PN; Failla S; Contò M; Di Biase M; Bavaro AR; Pirovano MP; Lavermicocca P
    J Food Sci; 2020 Feb; 85(2):465-476. PubMed ID: 31957899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A GMM-based breast cancer risk stratification using a resonance-frequency electrical impedance spectroscopy.
    Lederman D; Zheng B; Wang X; Sumkin JH; Gur D
    Med Phys; 2011 Mar; 38(3):1649-59. PubMed ID: 21520878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porphyrin fluorescence imaging for real-time monitoring and visualization of the freshness of beef stored at different temperatures.
    Liu H; Zhu L; Ji Z; Zhang M; Yang X
    Food Chem; 2024 Jun; 442():138420. PubMed ID: 38237294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Application of near infrared reflectance spectroscopy to predict meat chemical compositions: a review].
    Tao LL; Yang XJ; Deng JM; Zhang X
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Nov; 33(11):3002-9. PubMed ID: 24555369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Salmon, Tuna, and Beef Freshness Using a Portable Spectrometer.
    Moon EJ; Kim Y; Xu Y; Na Y; Giaccia AJ; Lee JH
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32752216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of freshness decay of minced beef stored in high-oxygen modified atmosphere packaged at different temperatures using NIR and MIR spectroscopy.
    Sinelli N; Limbo S; Torri L; Di Egidio V; Casiraghi E
    Meat Sci; 2010 Nov; 86(3):748-52. PubMed ID: 20655668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of lamb carcass composition by impedance spectroscopy.
    Altmann M; Pliquett U; Suess R; von Borell E
    J Anim Sci; 2004 Mar; 82(3):816-25. PubMed ID: 15032439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study of separation between ex vivo prostatic malignant and benign tissue using electrical impedance spectroscopy and electrical impedance tomography.
    Murphy EK; Mahara A; Khan S; Hyams ES; Schned AR; Pettus J; Halter RJ
    Physiol Meas; 2017 Jun; 38(6):1242-1261. PubMed ID: 28282026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Discrimination of pork storage time using near infrared spectroscopy and Adaboost+OLDA].
    Wu XH; Tang K; Sun J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Dec; 32(12):3238-41. PubMed ID: 23427543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative imaging with electrical impedance spectroscopy.
    McGivney D; Calvetti D; Somersalo E
    Phys Med Biol; 2012 Nov; 57(22):7289-302. PubMed ID: 23079558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.