BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 33540729)

  • 1. Plasma-Enhanced Atomic Layer Deposition of TiN Thin Films as an Effective Se Diffusion Barrier for CIGS Solar Cells.
    Woo HJ; Lee WJ; Koh EK; Jang SI; Kim S; Moon H; Kwon SH
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33540729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Above 15% Efficient Directly Sputtered CIGS Solar Cells Enabled by a Modified Back-Contact Interface.
    Dai W; Gao Z; Li J; Qin S; Wang R; Xu H; Wang X; Gao C; Teng X; Zhang Y; Hao X; Wang Y; Yu W
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):49414-49422. PubMed ID: 34615348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dataset for TiN Thin Films Prepared by Plasma-Enhanced Atomic Layer Deposition Using Tetrakis(dimethylamino)titanium (TDMAT) and Titanium Tetrachloride (TiCl
    Lee WJ; Yun EY; Lee HB; Hong SW; Kwon SH
    Data Brief; 2020 Aug; 31():105777. PubMed ID: 32551348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of sodium diffusion on the properties of CIGS solar absorbers prepared using elemental Se in a two-step process.
    Li W; Yan X; Aberle AG; Venkataraj S
    Sci Rep; 2019 Feb; 9(1):2637. PubMed ID: 30804384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insights into the Mo/Cu(In,Ga)Se
    Klinkert T; Theys B; Patriarche G; Jubault M; Donsanti F; Guillemoles JF; Lincot D
    J Chem Phys; 2016 Oct; 145(15):154702. PubMed ID: 27782451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved oxygen diffusion barrier properties of ruthenium-titanium nitride thin films prepared by plasma-enhanced atomic layer deposition.
    Jeong SJ; Kim DI; Kim SO; Han TH; Kwon JD; Park JS; Kwon SH
    J Nanosci Nanotechnol; 2011 Jan; 11(1):671-4. PubMed ID: 21446521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of the Al-Doped ZnO Sputter-Deposition Temperature on Cu(In,Ga)Se
    Park H; Alhammadi S; Minnam Reddy VR; Park C; Kim WK
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical impact of MoSe2 on CIGS thin-film solar cells.
    Hsiao KJ; Liu JD; Hsieh HH; Jiang TS
    Phys Chem Chem Phys; 2013 Nov; 15(41):18174-8. PubMed ID: 24068110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth-Promoting Mechanism of Bismuth-Doped Cu(In,Ga)Se
    Zeng L; Zhang L; Liang Y; Zeng C; Qiu Z; Lin H; Hong R
    ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35544602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-Temperature Plasma-Enhanced Atomic Layer Deposition of Tin(IV) Oxide from a Functionalized Alkyl Precursor: Fabrication and Evaluation of SnO
    Mai L; Zanders D; Subaşı E; Ciftyurek E; Hoppe C; Rogalla D; Gilbert W; Arcos TL; Schierbaum K; Grundmeier G; Bock C; Devi A
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3169-3180. PubMed ID: 30624887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Si-Doping Effects in Cu(In,Ga)Se
    Ishizuka S; Koida T; Taguchi N; Tanaka S; Fons P; Shibata H
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):31119-31128. PubMed ID: 28829112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CZTSe solar cells prepared by electrodeposition of Cu/Sn/Zn stack layer followed by selenization at low Se pressure.
    Yao L; Ao J; Jeng MJ; Bi J; Gao S; He Q; Zhou Z; Sun G; Sun Y; Chang LB; Chen JW
    Nanoscale Res Lett; 2014; 9(1):678. PubMed ID: 25593559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thin Ag Precursor Layer-Assisted Co-Evaporation Process for Low-Temperature Growth of Cu(In,Ga)Se
    Kim G; Kim WM; Park JK; Kim D; Yu H; Jeong JH
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):31923-31933. PubMed ID: 31393693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic Layer Deposition of Ultrathin ZnO Films for Hybrid Window Layers for Cu(In
    Lee J; Jeon DH; Hwang DK; Yang KJ; Kang JK; Sung SJ; Park H; Kim DH
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se
    Vermang B; Wätjen JT; Fjällström V; Rostvall F; Edoff M; Kotipalli R; Henry F; Flandre D
    Prog Photovolt; 2014 Oct; 22(10):1023-1029. PubMed ID: 26300619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of the Electrical Properties of a Cu(In,Ga)Se₂ Solar Cell Based on a ZnS Buffer Layer from Radio Frequency Magnetron Sputtering.
    Kim HS; Kim G; Kim E; Cho SJ; Lee DJ; Choi SG; Shan F; Kim SJ
    J Nanosci Nanotechnol; 2019 Mar; 19(3):1799-1803. PubMed ID: 30469270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control over MoSe
    Mandati S; Misra P; Boosagulla D; Tata NR; Bulusu SV
    Environ Sci Pollut Res Int; 2021 Mar; 28(12):15123-15129. PubMed ID: 33230789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural, Electrical, and Optical Properties of ZnO Film Used as Buffer Layer for CIGS Thin-Film Solar Cell.
    Choi EC; Cha JH; Jung DY; Hong B
    J Nanosci Nanotechnol; 2016 May; 16(5):5087-91. PubMed ID: 27483877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of Intrinsic ZnO Thickness in Cu(In,Ga)Se
    Alhammadi S; Park H; Kim WK
    Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31035494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voids and compositional inhomogeneities in Cu(In,Ga)Se
    Avancini E; Keller D; Carron R; Arroyo-Rojas Dasilva Y; Erni R; Priebe A; Di Napoli S; Carrisi M; Sozzi G; Menozzi R; Fu F; Buecheler S; Tiwari AN
    Sci Technol Adv Mater; 2018; 19(1):871-882. PubMed ID: 30479675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.