These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 33540750)

  • 1. Constitutive Model of Isotropic Magneto-Sensitive Rubber with Amplitude, Frequency, Magnetic and Temperature Dependence under a Continuum Mechanics Basis.
    Wang B; Kari L
    Polymers (Basel); 2021 Feb; 13(3):. PubMed ID: 33540750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ability of Constitutive Models to Characterize the Temperature Dependence of Rubber Hyperelasticity and to Predict the Stress-Strain Behavior of Filled Rubber under Different Defor Mation States.
    Fu X; Wang Z; Ma L
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33503897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency dependence prediction and parameter identification of rubber bushing.
    Li G; Wu L; Zhang S; Liu F
    Sci Rep; 2022 Jan; 12(1):863. PubMed ID: 35039585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Magneto-Hyperelastic Model for Silicone Rubber-Based Isotropic Magnetorheological Elastomer under Quasi-Static Compressive Loading.
    Qiao Y; Zhang J; Zhang M; Liu L; Zhai P
    Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33105773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Magneto-Mechanical Hyperelastic Property of Isotropic Magnetorheological Elastomers with Hybrid-Size Magnetic Particles.
    Wang L; Zhang K; Chen Z
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-Dependence of Rubber Hyperelasticity Based on the Eight-Chain Model.
    Fu X; Wang Z; Ma L; Zou Z; Zhang Q; Guan Y
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32316485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Full Range Experimental Study of Amplitude- and Frequency-Dependent Characteristics of Rubber Springs.
    Shi Y; Li J; Wang Y; Li X; Gao Y; Zhao D; Shi B; Zou L; Song X; Shang Y
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of sealing performance of a compression packer at high temperature.
    Zheng X; Li B; Fei G
    Sci Prog; 2022; 105(1):368504221079180. PubMed ID: 35253551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature Dependence of Rubber Hyper-Elasticity Based on Different Constitutive Models and Their Prediction Ability.
    Yao X; Wang Z; Ma L; Miao Z; Su M; Han X; Yang J
    Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical models for magneto-sensitive elastomers: A comparison between continuum and dipole approaches.
    Romeis D; Metsch P; Kästner M; Saphiannikova M
    Phys Rev E; 2017 Apr; 95(4-1):042501. PubMed ID: 28505855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Waveguides to Model the Dynamic Stiffness of Pre-Compressed Natural Rubber Vibration Isolators.
    Coja M; Kari L
    Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34070970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Large Deformation and Velocity Impacts on the Mechanical Behavior of Filled Rubber: Microstructure-Based Constitutive Modeling and Mechanical Testing.
    Wei W; Yuan Y; Gao X
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33050587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting Nonlinear and Anisotropic Mechanics of Metal Rubber Using a Combination of Constitutive Modeling, Machine Learning, and Finite Element Analysis.
    Zhao Y; Yan H; Wang Y; Jiang T; Jiang H
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stretchable Magneto-Mechanical Configurations with High Magnetic Sensitivity Based on "Gel-Type" Soft Rubber for Intelligent Applications.
    Kumar V; Park SS
    Gels; 2024 Jan; 10(1):. PubMed ID: 38275854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal Stability and Rheological Properties of Epoxidized Natural Rubber-Based Magnetorheological Elastomer.
    Yunus NA; Mazlan SA; ; Abdul Aziz SA; Tan Shilan S; Abdul Wahab NA
    Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30744210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical and acoustic performance prediction model for elastomers in different environmental conditions.
    Huang Y; Hou H; Oterkus S; Wei Z; Zhang S
    J Acoust Soc Am; 2018 Oct; 144(4):2269. PubMed ID: 30404481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Hyper-Elastic Creep Approach and Characterization Analysis for Rubber Vibration Systems.
    Leng D; Xu K; Qin L; Ma Y; Liu G
    Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31167381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature and Frequency Dependence of the Dynamic Viscoelastic Properties of Silicone Rubber.
    Liu X; Zhu D; Lin J; Zhang Y
    Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of Magneto-Induced Modulus by the Combination of Filler and Plasticizer Additives-Based Magnetorheological Elastomer.
    Khairi MHA; Noor EEM; Ubaidillah U; Aziz SAA; Mazlan SA; Tarmizi SMA; Nordin NA
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental Investigation and Constitutive Modeling of the Uncured Rubber Compound Based on the DMA Strain Scanning Method.
    Li Y; Sun X; Zhang S; Miao Y; Han S
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33207716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.