These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 33540797)

  • 1. Parameters Identification of High Temperature Damage Model of X12 Alloy Steel for Ultra-Supercritical Rotor Using Inverse Optimization Technique.
    Chen X; Du K; Du Y; Lian T; Liu J; Bai R; Li Z; Yang Y; Jung D
    Materials (Basel); 2021 Feb; 14(3):. PubMed ID: 33540797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of the Constitutive Model Parameters by Inverse Optimization Method and Characterization of Hot Deformation Behavior for Ultra-Supercritical Rotor Steel.
    Chen X; Du Y; Du K; Lian T; Liu B; Li Z; Zhou X
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33919734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Enhanced Lemaitre Model and Fracture Map for Cr5 Alloy Steel during High-Temperature Forming Process.
    Chen X; Guo L; Zhang B; Bai R
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hot Workability of Ultra-Supercritical Rotor Steel Using a 3-D Processing Map Based on the Dynamic Material Model.
    Chen X; Du Y; Lian T; Du K; Huang T
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32947999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Parameters Identification of High-Temperature Constitutive Model Based on Inverse Optimization Method and 3D Processing Map of Cr8 Alloy Steel.
    Chen X; Lian T; Zhang B; Du Y; Du K; Liu B; Li Z; Tian X; Jung DW
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33925819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constitutive Model Parameter Identification Based on Optimization Method and Formability Analysis for Ti6Al4V Alloy.
    Chen X; Zhang B; Du Y; Liu M; Bai R; Si Y; Liu B; Jung DW; Osaka A
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of varying ductile fracture criteria for 42CrMo steel by compressions at different temperatures and strain rates.
    Quan GZ; Luo GC; Mao A; Liang JT; Wu DS
    ScientificWorldJournal; 2014; 2014():579328. PubMed ID: 24592175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature Dependence of Fracture Characteristics of Variously Heat-Treated Grades of Ultra-High-Strength Steel: Experimental and Modelling.
    Pokluda J; Dlouhý I; Kianicová M; Čupera J; Horníková J; Šandera P
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stress Triaxiality in Anisotropic Metal Sheets-Definition and Experimental Acquisition for Numerical Damage Prediction.
    Rickhey F; Hong S
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical Simulation and Experimental Study on Residual Stress in the Curved Surface Forming of 12CrNi2 Alloy Steel by Laser Melting Deposition.
    Cui Z; Hu X; Dong S; Yan S; Zhao X
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32998235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow and fracture behavior of aluminum alloy 6082-T6 at different tensile strain rates and triaxialities.
    Chen X; Peng Y; Peng S; Yao S; Chen C; Xu P
    PLoS One; 2017; 12(7):e0181983. PubMed ID: 28759617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Simplified Ductile Fracture Model for Predicting Ultra-Low Cycle Fatigue of Structural Steels.
    Yu M; Xie X; Li S
    Materials (Basel); 2022 Feb; 15(5):. PubMed ID: 35268892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hot Formability Study of Cr5 Alloy Steel by Integration of FEM and 3D Processing Maps.
    Chen X; Si Y; Bai R; Zhang X; Li Z
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of the Onset of Crack Growth in Ductile Materials.
    Neimitz A; Galkiewicz J; Lipiec S; Dzioba I
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30340383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of damage models by finite element prediction of fracture in cylindrical tensile test.
    Eom J; Kim M; Lee S; Ryu H; Joun M
    J Nanosci Nanotechnol; 2014 Oct; 14(10):8019-23. PubMed ID: 25942914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation of Macroscopic Fracture Behavior with Microscopic Fracture Mechanism for AHSS Sheet.
    Qian L; Wang X; Sun C; Dai A
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30889847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hot-Deformation Behavior of High-Nitrogen Austenitic Stainless Steel under Continuous Cooling: Physical Simulation of Surface Microstructure Evolution of Superheavy Forgings during Hot Forging.
    Wang Z; Wang Y
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30974895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of Cyclic Void Growth Model for Ultra-Low Cycle Fatigue Prediction of Steel Bridge Piers.
    Li S; Xie X; Liao Y
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31100927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical Properties and Fracture Behavior of a TC4 Titanium Alloy Sheet.
    Zhao Z; Ji H; Zhong Y; Han C; Tang X
    Materials (Basel); 2022 Dec; 15(23):. PubMed ID: 36500085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructures and Fatigue Properties of High-Strength Low-Alloy Steel Prepared through Submerged-Arc Additive Manufacturing.
    Hu MJ; Ji LK; Chi Q; Ma QR
    Materials (Basel); 2022 Dec; 15(23):. PubMed ID: 36500110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.