These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 33541069)
1. Size-Specific, Dynamic, Probabilistic Material Flow Analysis of Titanium Dioxide Releases into the Environment. Zheng Y; Nowack B Environ Sci Technol; 2021 Feb; 55(4):2392-2402. PubMed ID: 33541069 [TBL] [Abstract][Full Text] [Related]
2. Probabilistic material flow analysis of released nano titanium dioxide in Mexico. Ortiz-Galvez LM; Caballero-Guzman A; Lopes C; Alfaro-Moreno E NanoImpact; 2024 Jul; 35():100516. PubMed ID: 38838766 [TBL] [Abstract][Full Text] [Related]
3. Considering the forms of released engineered nanomaterials in probabilistic material flow analysis. Adam V; Caballero-Guzman A; Nowack B Environ Pollut; 2018 Dec; 243(Pt A):17-27. PubMed ID: 30170204 [TBL] [Abstract][Full Text] [Related]
4. Characterization of food-grade titanium dioxide: the presence of nanosized particles. Yang Y; Doudrick K; Bi X; Hristovski K; Herckes P; Westerhoff P; Kaegi R Environ Sci Technol; 2014 Jun; 48(11):6391-400. PubMed ID: 24754874 [TBL] [Abstract][Full Text] [Related]
5. Acute and subchronic oral toxicity studies in rats with nanoscale and pigment grade titanium dioxide particles. Warheit DB; Brown SC; Donner EM Food Chem Toxicol; 2015 Oct; 84():208-24. PubMed ID: 26341192 [TBL] [Abstract][Full Text] [Related]
6. Integrated dynamic probabilistic material flow analysis of engineered materials in all European countries. Adam V; Wu Q; Nowack B NanoImpact; 2021 Apr; 22():100312. PubMed ID: 35559969 [TBL] [Abstract][Full Text] [Related]
7. How to measure hazards/risks following exposures to nanoscale or pigment-grade titanium dioxide particles. Warheit DB Toxicol Lett; 2013 Jul; 220(2):193-204. PubMed ID: 23603385 [TBL] [Abstract][Full Text] [Related]
8. Dynamic Model for the Stocks and Release Flows of Engineered Nanomaterials. Song R; Qin Y; Suh S; Keller AA Environ Sci Technol; 2017 Nov; 51(21):12424-12433. PubMed ID: 29022708 [TBL] [Abstract][Full Text] [Related]
9. Dynamic probabilistic material flow analysis of engineered nanomaterials in European waste treatment systems. Rajkovic S; Bornhöft NA; van der Weijden R; Nowack B; Adam V Waste Manag; 2020 Jul; 113():118-131. PubMed ID: 32531660 [TBL] [Abstract][Full Text] [Related]
10. Sewage spills are a major source of titanium dioxide engineered (nano)-particles into the environment. Loosli F; Wang J; Rothenberg S; Bizimis M; Winkler C; Borovinskaya O; Flamigni L; Baalousha M Environ Sci Nano; 2019 Mar; 6(3):763-777. PubMed ID: 31853367 [TBL] [Abstract][Full Text] [Related]
11. What is the impact of surface modifications and particle size on commercial titanium dioxide particle samples? - A review of in vivo pulmonary and oral toxicity studies - Revised 11-6-2018. Warheit DB; Brown SC Toxicol Lett; 2019 Mar; 302():42-59. PubMed ID: 30468858 [TBL] [Abstract][Full Text] [Related]
12. Characterisation of TiO Hetzer B; Gräf V; Walz E; Greiner R Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2021 May; 38(5):741-753. PubMed ID: 33852817 [TBL] [Abstract][Full Text] [Related]
13. Form-Specific and Probabilistic Environmental Risk Assessment of 3 Engineered Nanomaterials (Nano-Ag, Nano-TiO Hong H; Adam V; Nowack B Environ Toxicol Chem; 2021 Sep; 40(9):2629-2639. PubMed ID: 34171135 [TBL] [Abstract][Full Text] [Related]
14. Distinguishing Engineered TiO Bland GD; Battifarano M; Pradas Del Real AE; Sarret G; Lowry GV Environ Sci Technol; 2022 Mar; 56(5):2990-3001. PubMed ID: 35133134 [TBL] [Abstract][Full Text] [Related]
15. An Integrated Testing Strategy for Ecotoxicity (ITS-ECO) Assessment in the Marine Environmental Compartment using Mytilus spp.: A Case Study using Pristine and Coated CuO and TiO Connolly M; Little S; Hartl MGJ; Fernandes TF Environ Toxicol Chem; 2022 Jun; 41(6):1390-1406. PubMed ID: 35226375 [TBL] [Abstract][Full Text] [Related]
16. Modeling the fate and end-of-life phase of engineered nanomaterials in the Japanese construction sector. Suzuki S; Part F; Matsufuji Y; Huber-Humer M Waste Manag; 2018 Feb; 72():389-398. PubMed ID: 29196056 [TBL] [Abstract][Full Text] [Related]
17. Characterization of titanium dioxide nanoparticles in food products: analytical methods to define nanoparticles. Peters RJ; van Bemmel G; Herrera-Rivera Z; Helsper HP; Marvin HJ; Weigel S; Tromp PC; Oomen AG; Rietveld AG; Bouwmeester H J Agric Food Chem; 2014 Jul; 62(27):6285-93. PubMed ID: 24933406 [TBL] [Abstract][Full Text] [Related]
18. Risk assessment strategies for nanoscale and fine-sized titanium dioxide particles: Recognizing hazard and exposure issues. Warheit DB; Donner EM Food Chem Toxicol; 2015 Nov; 85():138-47. PubMed ID: 26362081 [TBL] [Abstract][Full Text] [Related]
19. Influence of septic system wastewater treatment on titanium dioxide nanoparticle subsurface transport mechanisms. Waller T; Marcus IM; Walker SL Anal Bioanal Chem; 2018 Sep; 410(24):6125-6132. PubMed ID: 29862435 [TBL] [Abstract][Full Text] [Related]
20. Temporal variation in TiO Nabi MM; Wang J; Goharian E; Baalousha M Sci Total Environ; 2022 Feb; 807(Pt 3):151081. PubMed ID: 34678372 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]