BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33541070)

  • 1. Multifunctional Calcium-Deficient Hydroxyl Apatite-Alginate Core-Shell-Structured Bone Substitutes as Cell and Drug Delivery Vehicles for Bone Tissue Regeneration.
    Raja N; Park H; Choi YJ; Yun HS
    ACS Biomater Sci Eng; 2021 Mar; 7(3):1123-1133. PubMed ID: 33541070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simultaneous 3D printing process for the fabrication of bioceramic and cell-laden hydrogel core/shell scaffolds with potential application in bone tissue regeneration.
    Raja N; Yun HS
    J Mater Chem B; 2016 Jul; 4(27):4707-4716. PubMed ID: 32263243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and properties of alginate/calcium phosphate hybrid beads: A comparative study.
    Tripathi G; Miyazaki T
    Biomed Mater Eng; 2021; 32(1):15-27. PubMed ID: 33252063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utilizing core-shell fibrous collagen-alginate hydrogel cell delivery system for bone tissue engineering.
    Perez RA; Kim M; Kim TH; Kim JH; Lee JH; Park JH; Knowles JC; Kim HW
    Tissue Eng Part A; 2014 Jan; 20(1-2):103-14. PubMed ID: 23924353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds.
    Bendtsen ST; Quinnell SP; Wei M
    J Biomed Mater Res A; 2017 May; 105(5):1457-1468. PubMed ID: 28187519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Protective role of calcium alginate hydrogel beads in cells during calcium phosphate cement setting reaction and its influencing factors].
    Li FF; Qiao PY; Dong LM; Liu YH; Xu T; Xie QF
    Beijing Da Xue Xue Bao Yi Xue Ban; 2013 Feb; 45(1):33-9. PubMed ID: 23411516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium alginate hydrogel-based bioprinting using a novel multinozzle bioprinting system.
    Song SJ; Choi J; Park YD; Hong S; Lee JJ; Ahn CB; Choi H; Sun K
    Artif Organs; 2011 Nov; 35(11):1132-6. PubMed ID: 22097985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioglass/alginate composite hydrogel beads as cell carriers for bone regeneration.
    Zeng Q; Han Y; Li H; Chang J
    J Biomed Mater Res B Appl Biomater; 2014 Jan; 102(1):42-51. PubMed ID: 23847006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of direct loading of phytoestrogens into the calcium phosphate scaffold on osteoporotic bone tissue regeneration.
    Tripathi G; Raja N; Yun HS
    J Mater Chem B; 2015 Nov; 3(44):8694-8703. PubMed ID: 32262726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of in situ hardening composite microcarriers: calcium phosphate cement combined with alginate for bone regeneration.
    Park JH; Lee EJ; Knowles JC; Kim HW
    J Biomater Appl; 2014 Mar; 28(7):1079-84. PubMed ID: 23836845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composite material consisting of microporous β-TCP ceramic and alginate for delayed release of antibiotics.
    Seidenstuecker M; Ruehe J; Suedkamp NP; Serr A; Wittmer A; Bohner M; Bernstein A; Mayr HO
    Acta Biomater; 2017 Mar; 51():433-446. PubMed ID: 28104468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Core-shell designed scaffolds of alginate/alpha-tricalcium phosphate for the loading and delivery of biological proteins.
    Perez RA; Kim HW
    J Biomed Mater Res A; 2013 Apr; 101(4):1103-12. PubMed ID: 23015482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogel Encapsulation of Cells in Core-Shell Microcapsules for Cell Delivery.
    Nguyen DK; Son YM; Lee NE
    Adv Healthc Mater; 2015 Jul; 4(10):1537-44. PubMed ID: 25963828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong calcium phosphate cement-chitosan-mesh construct containing cell-encapsulating hydrogel beads for bone tissue engineering.
    Weir MD; Xu HH; Simon CG
    J Biomed Mater Res A; 2006 Jun; 77(3):487-96. PubMed ID: 16482548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of core-shell microcapsules using PLGA and alginate for dual growth factor delivery system.
    Choi DH; Park CH; Kim IH; Chun HJ; Park K; Han DK
    J Control Release; 2010 Oct; 147(2):193-201. PubMed ID: 20647022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of multifunctional alginate microspheres containing hydroxyapatite powder for simultaneous cell and drug delivery.
    Kim J; Choi YJ; Park H; Yun HS
    Front Bioeng Biotechnol; 2022; 10():827626. PubMed ID: 36017354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alginate core-shell beads for simplified three-dimensional tumor spheroid culture and drug screening.
    Yu L; Ni C; Grist SM; Bayly C; Cheung KC
    Biomed Microdevices; 2015 Apr; 17(2):33. PubMed ID: 25681969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of osteoblastic differentiation in alginate gel beads with bioactive octacalcium phosphate particles.
    Endo K; Anada T; Yamada M; Seki M; Sasaki K; Suzuki O
    Biomed Mater; 2015 Dec; 10(6):065019. PubMed ID: 26657659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioactive apatite incorporated alginate microspheres with sustained drug-delivery for bone regeneration application.
    Li H; Jiang F; Ye S; Wu Y; Zhu K; Wang D
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():779-86. PubMed ID: 26952484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HAp granules encapsulated oxidized alginate-gelatin-biphasic calcium phosphate hydrogel for bone regeneration.
    Sarker A; Amirian J; Min YK; Lee BT
    Int J Biol Macromol; 2015 Nov; 81():898-911. PubMed ID: 26394381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.