These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33541070)

  • 21. Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering.
    Lee GS; Park JH; Shin US; Kim HW
    Acta Biomater; 2011 Aug; 7(8):3178-86. PubMed ID: 21539944
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A self-setting iPSMSC-alginate-calcium phosphate paste for bone tissue engineering.
    Wang P; Song Y; Weir MD; Sun J; Zhao L; Simon CG; Xu HH
    Dent Mater; 2016 Feb; 32(2):252-63. PubMed ID: 26743965
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gelation and biocompatibility of injectable alginate-calcium phosphate gels for bone regeneration.
    Cardoso DA; van den Beucken JJ; Both LL; Bender J; Jansen JA; Leeuwenburgh SC
    J Biomed Mater Res A; 2014 Mar; 102(3):808-17. PubMed ID: 23589413
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multifunctional bone substitute using carbon dot and 3D printed calcium-deficient hydroxyapatite scaffolds for osteoclast inhibition and fluorescence imaging.
    Lee KK; Raja N; Yun HS; Lee SC; Lee CS
    Acta Biomater; 2023 Mar; 159():382-393. PubMed ID: 36669550
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing.
    Castilho M; Rodrigues J; Pires I; Gouveia B; Pereira M; Moseke C; Groll J; Ewald A; Vorndran E
    Biofabrication; 2015 Jan; 7(1):015004. PubMed ID: 25562119
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel tricalcium silicate/monocalcium phosphate monohydrate composite bone cement.
    Huan Z; Chang J
    J Biomed Mater Res B Appl Biomater; 2007 Aug; 82(2):352-9. PubMed ID: 17238165
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Apatite-forming ability of alginate fibers treated with calcium hydroxide solution.
    Kokubo T; Hanakawa M; Kawashita M; Minoda M; Beppu T; Miyamoto T; Nakamura T
    J Mater Sci Mater Med; 2004 Sep; 15(9):1007-12. PubMed ID: 15448408
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A simultaneous process of 3D magnesium phosphate scaffold fabrication and bioactive substance loading for hard tissue regeneration.
    Lee J; Farag MM; Park EK; Lim J; Yun HS
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():252-60. PubMed ID: 24433911
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Augmenting in vitro osteogenesis of a glycine-arginine-glycine-aspartic-conjugated oxidized alginate-gelatin-biphasic calcium phosphate hydrogel composite and in vivo bone biogenesis through stem cell delivery.
    Linh NT; Paul K; Kim B; Lee BT
    J Biomater Appl; 2016 Nov; 31(5):661-673. PubMed ID: 27604088
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional cell-laden alginate scaffolds consisting of core/shell struts for tissue regeneration.
    Ahn S; Lee H; Kim G
    Carbohydr Polym; 2013 Oct; 98(1):936-42. PubMed ID: 23987431
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D printed TCP-based scaffold incorporating VEGF-loaded PLGA microspheres for craniofacial tissue engineering.
    Fahimipour F; Rasoulianboroujeni M; Dashtimoghadam E; Khoshroo K; Tahriri M; Bastami F; Lobner D; Tayebi L
    Dent Mater; 2017 Nov; 33(11):1205-1216. PubMed ID: 28882369
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Liver tissue-derived ECM loaded nanocellulose-alginate-TCP composite beads for accelerated bone regeneration.
    Rahaman MS; Park SS; Kang HJ; Sultana T; Gwon JG; Lee BT
    Biomed Mater; 2022 Aug; 17(5):. PubMed ID: 35952638
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of novel core-shell hybrid alginate hydrogel beads.
    Liu H; Wang C; Gao Q; Liu X; Tong Z
    Int J Pharm; 2008 Mar; 351(1-2):104-12. PubMed ID: 17964745
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controlled mineralisation and recrystallisation of brushite within alginate hydrogels.
    Bjørnøy SH; Bassett DC; Ucar S; Andreassen JP; Sikorski P
    Biomed Mater; 2016 Feb; 11(1):015013. PubMed ID: 26836293
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A bioprintable form of chitosan hydrogel for bone tissue engineering.
    Demirtaş TT; Irmak G; Gümüşderelioğlu M
    Biofabrication; 2017 Jul; 9(3):035003. PubMed ID: 28639943
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Injectable calcium phosphate-alginate-chitosan microencapsulated MC3T3-E1 cell paste for bone tissue engineering in vivo.
    Qiao P; Wang J; Xie Q; Li F; Dong L; Xu T
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4633-9. PubMed ID: 24094170
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cell seeding into calcium phosphate cement.
    Simon CG; Guthrie WF; Wang FW
    J Biomed Mater Res A; 2004 Mar; 68(4):628-39. PubMed ID: 14986318
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combined delivery of bone morphogenetic protein-2 and insulin-like growth factor-1 from nano-poly (γ-glutamic acid)/β-tricalcium phosphate-based calcium phosphate cement and its effect on bone regeneration in vitro.
    Shu X; Feng J; Feng J; Huang X; Li L; Shi Q
    J Biomater Appl; 2017 Nov; 32(5):547-560. PubMed ID: 29113568
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hybrid 3D printing and electrodeposition approach for controllable 3D alginate hydrogel formation.
    Shang W; Liu Y; Wan W; Hu C; Liu Z; Wong CT; Fukuda T; Shen Y
    Biofabrication; 2017 Jun; 9(2):025032. PubMed ID: 28436920
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D printing mesoporous bioactive glass/sodium alginate/gelatin sustained release scaffolds for bone repair.
    Wu J; Miao G; Zheng Z; Li Z; Ren W; Wu C; Li Y; Huang Z; Yang L; Guo L
    J Biomater Appl; 2019 Jan; 33(6):755-765. PubMed ID: 30426864
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.