These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 33541070)
61. Examination of In vitro and In vivo biocompatibility of alginate-hyaluronic acid microbeads As a promising method in cell delivery for kidney regeneration. Amirian J; Van TTT; Bae SH; Jung HI; Choi HJ; Cho HD; Lee BT Int J Biol Macromol; 2017 Dec; 105(Pt 1):143-153. PubMed ID: 28698077 [TBL] [Abstract][Full Text] [Related]
62. Structure and biocompatibility of an injectable bone regeneration composite. Tan R; Feng Q; Jin H; Li J; Yu X; She Z; Wang M; Liu H J Biomater Sci Polym Ed; 2011; 22(14):1861-79. PubMed ID: 20979688 [TBL] [Abstract][Full Text] [Related]
63. Encapsulation of Lactobacillus kefiri in alginate microbeads using a double novel aerosol technique. Demitri C; Lamanna L; De Benedetto E; Damiano F; Cappello MS; Siculella L; Sannino A Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():548-555. PubMed ID: 28532064 [TBL] [Abstract][Full Text] [Related]
64. Calcium alginate beads embedded in silk fibroin as 3D dual drug releasing scaffolds. Mandal BB; Kundu SC Biomaterials; 2009 Oct; 30(28):5170-7. PubMed ID: 19552952 [TBL] [Abstract][Full Text] [Related]
65. Controlled release of rat adipose-derived stem cells from alginate microbeads. Leslie SK; Cohen DJ; Sedlaczek J; Pinsker EJ; Boyan BD; Schwartz Z Biomaterials; 2013 Nov; 34(33):8172-84. PubMed ID: 23906513 [TBL] [Abstract][Full Text] [Related]
66. Influence of platelet-rich plasma on osteogenic differentiation of mesenchymal stem cells and ectopic bone formation in calcium phosphate ceramics. Kasten P; Vogel J; Luginbühl R; Niemeyer P; Weiss S; Schneider S; Kramer M; Leo A; Richter W Cells Tissues Organs; 2006; 183(2):68-79. PubMed ID: 17053323 [TBL] [Abstract][Full Text] [Related]
67. Microspheres of collagen/beta-TCP with an open network fibrillar structure strengthened by chitosan. Chiu CT; Chang WC; Wang YJ Artif Cells Blood Substit Immobil Biotechnol; 2007; 35(3):309-17. PubMed ID: 17573629 [TBL] [Abstract][Full Text] [Related]
68. Construction of multilayer alginate hydrogel beads for oral delivery of probiotics cells. Li Y; Feng C; Li J; Mu Y; Liu Y; Kong M; Cheng X; Chen X Int J Biol Macromol; 2017 Dec; 105(Pt 1):924-930. PubMed ID: 28736041 [TBL] [Abstract][Full Text] [Related]
69. Cells (MC3T3-E1)-laden alginate scaffolds fabricated by a modified solid-freeform fabrication process supplemented with an aerosol spraying. Ahn S; Lee H; Bonassar LJ; Kim G Biomacromolecules; 2012 Sep; 13(9):2997-3003. PubMed ID: 22913233 [TBL] [Abstract][Full Text] [Related]
70. Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology. Nishiyama Y; Nakamura M; Henmi C; Yamaguchi K; Mochizuki S; Nakagawa H; Takiura K J Biomech Eng; 2009 Mar; 131(3):035001. PubMed ID: 19154078 [TBL] [Abstract][Full Text] [Related]
71. Novel co-axial prilling technique for the development of core-shell particles as delayed drug delivery systems. Del Gaudio P; Auriemma G; Russo P; Mencherini T; Campiglia P; Stigliani M; Aquino RP Eur J Pharm Biopharm; 2014 Aug; 87(3):541-7. PubMed ID: 24582614 [TBL] [Abstract][Full Text] [Related]
72. Large scale production of yolk-shell β-tricalcium phosphate powders, and their bioactivities as novel bone substitutes. Cho JS; Lee JH; Kang YC Phys Chem Chem Phys; 2014 Aug; 16(32):16962-7. PubMed ID: 25005151 [TBL] [Abstract][Full Text] [Related]
73. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. Kundu J; Shim JH; Jang J; Kim SW; Cho DW J Tissue Eng Regen Med; 2015 Nov; 9(11):1286-97. PubMed ID: 23349081 [TBL] [Abstract][Full Text] [Related]
74. Encapsulation of a glycosaminoglycan in hydroxyapatite/alginate capsules. Tan CS; Jejurikar A; Rai B; Bostrom T; Lawrie G; Grøndahl L J Biomed Mater Res A; 2009 Dec; 91(3):866-77. PubMed ID: 19065572 [TBL] [Abstract][Full Text] [Related]
75. Usefulness as guided bone regeneration membrane of the alginate membrane. Ueyama Y; Ishikawa K; Mano T; Koyama T; Nagatsuka H; Suzuki K; Ryoke K Biomaterials; 2002 May; 23(9):2027-33. PubMed ID: 11996044 [TBL] [Abstract][Full Text] [Related]
76. A novel pH-responsive hydrogel-based on calcium alginate engineered by the previous formation of polyelectrolyte complexes (PECs) intended to vaginal administration. Ferreira NN; Perez TA; Pedreiro LN; Prezotti FG; Boni FI; Cardoso VMO; Venâncio T; Gremião MPD Drug Dev Ind Pharm; 2017 Oct; 43(10):1656-1668. PubMed ID: 28489424 [TBL] [Abstract][Full Text] [Related]
77. Novel bioactive composite bone cements based on the beta-tricalcium phosphate-monocalcium phosphate monohydrate composite cement system. Huan Z; Chang J Acta Biomater; 2009 May; 5(4):1253-64. PubMed ID: 18996779 [TBL] [Abstract][Full Text] [Related]
78. Injectable thermosensitive alginate/β-tricalcium phosphate/aspirin hydrogels for bone augmentation. Fang X; Lei L; Jiang T; Chen Y; Kang Y J Biomed Mater Res B Appl Biomater; 2018 Jul; 106(5):1739-1751. PubMed ID: 28888067 [TBL] [Abstract][Full Text] [Related]
79. Development and evaluation of polyethyleneimine-treated calcium alginate beads for sustained release of diltiazem. Halder A; Mukherjee S; Sa B J Microencapsul; 2005 Feb; 22(1):67-80. PubMed ID: 16019892 [TBL] [Abstract][Full Text] [Related]
80. Alginate gel-coated oil-entrapped alginate-tamarind gum-magnesium stearate buoyant beads of risperidone. Bera H; Boddupalli S; Nandikonda S; Kumar S; Nayak AK Int J Biol Macromol; 2015; 78():102-11. PubMed ID: 25861741 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]