These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33541407)

  • 1. ASFP (Artificial Intelligence based Scoring Function Platform): a web server for the development of customized scoring functions.
    Zhang X; Shen C; Guo X; Wang Z; Weng G; Ye Q; Wang G; He Q; Yang B; Cao D; Hou T
    J Cheminform; 2021 Feb; 13(1):6. PubMed ID: 33541407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment.
    Ashtawy HM; Mahapatra NR
    J Chem Inf Model; 2018 Jan; 58(1):119-133. PubMed ID: 29190087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BgN-Score and BsN-Score: bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes.
    Ashtawy HM; Mahapatra NR
    BMC Bioinformatics; 2015; 16 Suppl 4(Suppl 4):S8. PubMed ID: 25734685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can machine learning consistently improve the scoring power of classical scoring functions? Insights into the role of machine learning in scoring functions.
    Shen C; Hu Y; Wang Z; Zhang X; Zhong H; Wang G; Yao X; Xu L; Cao D; Hou T
    Brief Bioinform; 2021 Jan; 22(1):497-514. PubMed ID: 31982914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative assessment of ranking accuracies of conventional and machine-learning-based scoring functions for protein-ligand binding affinity prediction.
    Ashtawy HM; Mahapatra NR
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(5):1301-13. PubMed ID: 22411892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Comparative Assessment of Predictive Accuracies of Conventional and Machine Learning Scoring Functions for Protein-Ligand Binding Affinity Prediction.
    Ashtawy HM; Mahapatra NR
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):335-47. PubMed ID: 26357221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ML-PLIC: a web platform for characterizing protein-ligand interactions and developing machine learning-based scoring functions.
    Zhang X; Shen C; Wang T; Deng Y; Kang Y; Li D; Hou T; Pan P
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37738401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving structure-based virtual screening performance via learning from scoring function components.
    Xiong GL; Ye WL; Shen C; Lu AP; Hou TJ; Cao DS
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32496540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins.
    Ashtawy HM; Mahapatra NR
    BMC Bioinformatics; 2015; 16 Suppl 6(Suppl 6):S3. PubMed ID: 25916860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.
    Brylinski M
    J Chem Inf Model; 2013 Nov; 53(11):3097-112. PubMed ID: 24171431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of compound library size on the performance of scoring functions for structure-based virtual screening.
    Fresnais L; Ballester PJ
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32568385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TB-IECS: an accurate machine learning-based scoring function for virtual screening.
    Zhang X; Shen C; Jiang D; Zhang J; Ye Q; Xu L; Hou T; Pan P; Kang Y
    J Cheminform; 2023 Jul; 15(1):63. PubMed ID: 37403155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning on ligand-residue interaction profiles to significantly improve binding affinity prediction.
    Ji B; He X; Zhai J; Zhang Y; Man VH; Wang J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33758923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Descriptor Data Bank (DDB): A Cloud Platform for Multiperspective Modeling of Protein-Ligand Interactions.
    Ashtawy HM; Mahapatra NR
    J Chem Inf Model; 2018 Jan; 58(1):134-147. PubMed ID: 29186950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving Docking-Based Virtual Screening Ability by Integrating Multiple Energy Auxiliary Terms from Molecular Docking Scoring.
    Ye WL; Shen C; Xiong GL; Ding JJ; Lu AP; Hou TJ; Cao DS
    J Chem Inf Model; 2020 Sep; 60(9):4216-4230. PubMed ID: 32352294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A practical guide to machine-learning scoring for structure-based virtual screening.
    Tran-Nguyen VK; Junaid M; Simeon S; Ballester PJ
    Nat Protoc; 2023 Nov; 18(11):3460-3511. PubMed ID: 37845361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy or novelty: what can we gain from target-specific machine-learning-based scoring functions in virtual screening?
    Shen C; Weng G; Zhang X; Leung EL; Yao X; Pang J; Chai X; Li D; Wang E; Cao D; Hou T
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33418562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening.
    Ain QU; Aleksandrova A; Roessler FD; Ballester PJ
    Wiley Interdiscip Rev Comput Mol Sci; 2015; 5(6):405-424. PubMed ID: 27110292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.