BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33541646)

  • 1. RETRACTED: Optimized reducing-end labeling of cellulose nanocrystals: Implication for the structure of microfibril bundles in plant cell walls.
    Lin F; Putaux JL; Jean B
    Carbohydr Polym; 2021 Apr; 257():117618. PubMed ID: 33541646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Native Structure of the Plant Cell Wall Utilized for Top-Down Assembly of Aligned Cellulose Nanocrystals into Micrometer-Sized Nanoporous Particles.
    Spiliopoulos P; Solala I; Pääkkönen T; Seitsonen J; van Bochove B; Seppälä JV; Kontturi E
    Macromol Rapid Commun; 2020 Aug; 41(15):e2000201. PubMed ID: 32613701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy.
    Zhang T; Zheng Y; Cosgrove DJ
    Plant J; 2016 Jan; 85(2):179-92. PubMed ID: 26676644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radial microfibril arrangements in wood cell walls.
    Maaß MC; Saleh S; Militz H; Volkert CA
    Planta; 2022 Sep; 256(4):75. PubMed ID: 36087126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RETRACTED: Monolayers of pigment-protein complexes on a bare gold electrode: Orientation controlled deposition and comparison of electron transfer rate for two configurations.
    Kamran M; Akkilic N; Luo J; Abbasi AZ
    Biosens Bioelectron; 2015 Jul; 69():40-5. PubMed ID: 25703727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasi-one-dimensional arrangement of silver nanoparticles templated by cellulose microfibrils.
    Wu M; Kuga S; Huang Y
    Langmuir; 2008 Sep; 24(18):10494-7. PubMed ID: 18680325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in the orientations of cellulose microfibrils during the development of collenchyma cell walls of celery (Apium graveolens L.).
    Chen D; Melton LD; McGillivray DJ; Ryan TM; Harris PJ
    Planta; 2019 Dec; 250(6):1819-1832. PubMed ID: 31463558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moisture changes in the plant cell wall force cellulose crystallites to deform.
    Zabler S; Paris O; Burgert I; Fratzl P
    J Struct Biol; 2010 Aug; 171(2):133-41. PubMed ID: 20438848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced cellulose orientation analysis in complex model plant tissues.
    Rüggeberg M; Saxe F; Metzger TH; Sundberg B; Fratzl P; Burgert I
    J Struct Biol; 2013 Sep; 183(3):419-428. PubMed ID: 23867392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different Conformations of Surface Cellulose Molecules in Native Cellulose Microfibrils Revealed by Layer-by-Layer Peeling.
    Funahashi R; Okita Y; Hondo H; Zhao M; Saito T; Isogai A
    Biomacromolecules; 2017 Nov; 18(11):3687-3694. PubMed ID: 28954511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aspen Tension Wood Fibers Contain β-(1---> 4)-Galactans and Acidic Arabinogalactans Retained by Cellulose Microfibrils in Gelatinous Walls.
    Gorshkova T; Mokshina N; Chernova T; Ibragimova N; Salnikov V; Mikshina P; Tryfona T; Banasiak A; Immerzeel P; Dupree P; Mellerowicz EJ
    Plant Physiol; 2015 Nov; 169(3):2048-63. PubMed ID: 26378099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose.
    Saito T; Nishiyama Y; Putaux JL; Vignon M; Isogai A
    Biomacromolecules; 2006 Jun; 7(6):1687-91. PubMed ID: 16768384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alteration of oriented deposition of cellulose microfibrils by mutation of a katanin-like microtubule-severing protein.
    Burk DH; Ye ZH
    Plant Cell; 2002 Sep; 14(9):2145-60. PubMed ID: 12215512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Obtainment and characterization of nanocellulose from an unwoven industrial textile cotton waste: Effect of acid hydrolysis conditions.
    Maciel MMÁD; Benini KCCC; Voorwald HJC; Cioffi MOH
    Int J Biol Macromol; 2019 Apr; 126():496-506. PubMed ID: 30593806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retraction notice to "MiR-650 regulates the proliferation, migration and invasion of human oral cancer by targeting Growth factor independent 1 (Gfi1)" [Biochimie 156 (2018) 69-78].
    Ningning S; Libo S; Chuanbin W; Haijiang S; Qing Z
    Biochimie; 2023 Jan; 204():171. PubMed ID: 36623910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release of internal molecular torque results in twists of Glaucocystis cellulose nanofibers.
    Ogawa Y
    Carbohydr Polym; 2021 Jan; 251():117102. PubMed ID: 33142640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pectins influence microfibril aggregation in celery cell walls: An atomic force microscopy study.
    Thimm JC; Burritt DJ; Ducker WA; Melton LD
    J Struct Biol; 2009 Nov; 168(2):337-44. PubMed ID: 19567269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy.
    Lee CM; Kafle K; Park YB; Kim SH
    Phys Chem Chem Phys; 2014 Jun; 16(22):10844-53. PubMed ID: 24760365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale Mechanism of Moisture-Induced Swelling in Wood Microfibril Bundles.
    Paajanen A; Zitting A; Rautkari L; Ketoja JA; Penttilä PA
    Nano Lett; 2022 Jul; 22(13):5143-5150. PubMed ID: 35767745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellulose microfibril orientation of Picea abies and its variability at the micron-level determined by Raman imaging.
    Gierlinger N; Luss S; König C; Konnerth J; Eder M; Fratzl P
    J Exp Bot; 2010; 61(2):587-95. PubMed ID: 20007198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.