These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33541920)

  • 1. Effects of varying chest compression depths on carotid blood flow and blood pressure in asphyxiated piglets.
    Bruckner M; O'Reilly M; Lee TF; Neset M; Cheung PY; Schmölzer GM
    Arch Dis Child Fetal Neonatal Ed; 2021 Sep; 106(5):553-556. PubMed ID: 33541920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haemodynamic changes with varying chest compression rates in asphyxiated piglets.
    Bruckner M; Neset M; O'Reilly M; Lee TF; Cheung PY; Schmölzer GM
    Arch Dis Child Fetal Neonatal Ed; 2023 Mar; 108(2):200-203. PubMed ID: 35135850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of optimal chest compression depth during neonatal cardiopulmonary resuscitation: a randomised controlled animal trial.
    Bruckner M; Kim SY; Shim GH; Neset M; Garcia-Hidalgo C; Lee TF; O'Reilly M; Cheung PY; Schmölzer GM
    Arch Dis Child Fetal Neonatal Ed; 2022 May; 107(3):262-268. PubMed ID: 34330756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous chest compressions with asynchronous ventilations increase carotid blood flow in the perinatal asphyxiated lamb model.
    Vali P; Lesneski A; Hardie M; Alhassen Z; Chen P; Joudi H; Sankaran D; Lakshminrusimha S
    Pediatr Res; 2021 Oct; 90(4):752-758. PubMed ID: 33469187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of different durations of sustained inflation during cardiopulmonary resuscitation on return of spontaneous circulation and hemodynamic recovery in severely asphyxiated piglets.
    Mustofa J; Cheung PY; Patel S; Lee TF; Lu M; Pasquin MP; OʼReilly M; Schmölzer GM
    Resuscitation; 2018 Aug; 129():82-89. PubMed ID: 29928955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chest Compressions during Sustained Inflations Improve Recovery When Compared to a 3:1 Compression:Ventilation Ratio during Cardiopulmonary Resuscitation in a Neonatal Porcine Model of Asphyxia.
    Li ES; Görens I; Cheung PY; Lee TF; Lu M; O'Reilly M; Schmölzer GM
    Neonatology; 2017; 112(4):337-346. PubMed ID: 28768280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asynchronous ventilation at 120 compared with 90 or 100 compressions per minute improves haemodynamic recovery in asphyxiated newborn piglets.
    Patel S; Cheung PY; Lee TF; Pasquin MP; Lu M; O'Reilly M; Schmölzer GM
    Arch Dis Child Fetal Neonatal Ed; 2020 Jul; 105(4):357-363. PubMed ID: 31123054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The SURV1VE trial-sustained inflation and chest compression versus 3:1 chest compression-to-ventilation ratio during cardiopulmonary resuscitation of asphyxiated newborns: study protocol for a cluster randomized controlled trial.
    Schmölzer GM; Pichler G; Solevåg AL; Fray C; van Os S; Cheung PY;
    Trials; 2019 Feb; 20(1):139. PubMed ID: 30782199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Different Compression to Ventilation Ratios (2: 1, 3: 1, and 4: 1) during Cardiopulmonary Resuscitation in a Porcine Model of Neonatal Asphyxia.
    Pasquin MP; Cheung PY; Patel S; Lu M; Lee TF; Wagner M; O'Reilly M; Schmölzer GM
    Neonatology; 2018; 114(1):37-45. PubMed ID: 29649792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiopulmonary resuscitation with chest compressions during sustained inflations: a new technique of neonatal resuscitation that improves recovery and survival in a neonatal porcine model.
    Schmölzer GM; O'Reilly M; Labossiere J; Lee TF; Cowan S; Qin S; Bigam DL; Cheung PY
    Circulation; 2013 Dec; 128(23):2495-503. PubMed ID: 24088527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chest compressions superimposed with sustained inflations during cardiopulmonary resuscitation in asphyxiated pediatric piglets.
    Morin CMD; Cheung PY; Lee TF; O'Reilly M; Schmölzer GM
    Pediatr Res; 2024 Mar; 95(4):988-995. PubMed ID: 36932182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of hemodynamic effects of chest compression delivered via machine or human in asphyxiated piglets.
    O'Reilly M; Lee TF; Cheung PY; Schmölzer GM
    Pediatr Res; 2024 Jan; 95(1):156-159. PubMed ID: 37741932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Return of spontaneous Circulation Is Not Affected by Different Chest Compression Rates Superimposed with Sustained Inflations during Cardiopulmonary Resuscitation in Newborn Piglets.
    Li ES; Cheung PY; Lee TF; Lu M; O'Reilly M; Schmölzer GM
    PLoS One; 2016; 11(6):e0157249. PubMed ID: 27304210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3:1 compression to ventilation ratio versus continuous chest compression with asynchronous ventilation in a porcine model of neonatal resuscitation.
    Schmölzer GM; O'Reilly M; Labossiere J; Lee TF; Cowan S; Nicoll J; Bigam DL; Cheung PY
    Resuscitation; 2014 Feb; 85(2):270-5. PubMed ID: 24161768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustained Inflation During Chest Compression: A New Technique of Pediatric Cardiopulmonary Resuscitation That Improves Recovery and Survival in a Pediatric Porcine Model.
    Schmölzer GM; Patel SD; Monacelli S; Kim SY; Shim GH; Lee TF; O'Reilly M; Cheung PY
    J Am Heart Assoc; 2021 Aug; 10(15):e019136. PubMed ID: 34284596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review of approaches to optimise chest compressions in the resuscitation of asphyxiated newborns.
    Solevåg AL; Cheung PY; O'Reilly M; Schmölzer GM
    Arch Dis Child Fetal Neonatal Ed; 2016 May; 101(3):F272-6. PubMed ID: 26627554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of chest compressions on cardiovascular and cerebral hemodynamics in asphyxiated near-term lambs.
    Sobotka KS; Polglase GR; Schmölzer GM; Davis PG; Klingenberg C; Hooper SB
    Pediatr Res; 2015 Oct; 78(4):395-400. PubMed ID: 26086644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of sustained inflation pressure during neonatal cardiopulmonary resuscitation of asphyxiated piglets.
    Shim GH; Kim SY; Cheung PY; Lee TF; O'Reilly M; Schmölzer GM
    PLoS One; 2020; 15(6):e0228693. PubMed ID: 32574159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pilot Study to Compare the Use of End-Tidal Carbon Dioxide-Guided and Diastolic Blood Pressure-Guided Chest Compression Delivery in a Swine Model of Neonatal Asphyxial Cardiac Arrest.
    O'Brien CE; Reyes M; Santos PT; Heitmiller SE; Kulikowicz E; Kudchadkar SR; Lee JK; Hunt EA; Koehler RC; Shaffner DH
    J Am Heart Assoc; 2018 Oct; 7(19):e009728. PubMed ID: 30371318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-perfusing cardiac rhythms in asphyxiated newborn piglets.
    Solevåg AL; Luong D; Lee TF; O'Reilly M; Cheung PY; Schmölzer GM
    PLoS One; 2019; 14(4):e0214506. PubMed ID: 30947278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.