These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33542257)

  • 21. Transient scattering effects and electron plasma dynamics during ultrafast laser ablation of water.
    Hernandez-Rueda J; Oosten DV
    Opt Lett; 2019 Apr; 44(7):1856-1859. PubMed ID: 30933165
    [TBL] [Abstract][Full Text] [Related]  

  • 22. First-principles modeling of electromagnetic scattering by discrete and discretely heterogeneous random media.
    Mishchenko MI; Dlugach JM; Yurkin MA; Bi L; Cairns B; Liu L; Panetta RL; Travis LD; Yang P; Zakharova NT
    Phys Rep; 2016 May; 632():1-75. PubMed ID: 29657355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simulation of two-phase liquid-vapor flows using a high-order compact finite-difference lattice Boltzmann method.
    Hejranfar K; Ezzatneshan E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053305. PubMed ID: 26651814
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mapped Chebyshev pseudo-spectral method for simulating the shear wave propagation in the plane of symmetry of a transversely isotropic viscoelastic medium.
    Qiang B; Brigham JC; McGough RJ; Greenleaf JF; Urban MW
    Med Biol Eng Comput; 2017 Mar; 55(3):389-401. PubMed ID: 27221812
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling of atmospheric-pressure plasma columns sustained by surface waves.
    Kabouzi Y; Graves DB; Castaños-Martínez E; Moisan M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016402. PubMed ID: 17358263
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A semi-implicit augmented IIM for Navier-Stokes equations with open, traction, or free boundary conditions.
    Li Z; Xiao L; Cai Q; Zhao H; Luo R
    J Comput Phys; 2015 Aug; 297():182-193. PubMed ID: 27087702
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An improved acoustical wave propagator method and its application to a duct structure.
    Peng SZ; Cheng L
    J Acoust Soc Am; 2008 Feb; 123(2):610-21. PubMed ID: 18247866
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relativistic breather-type solitary waves with linear polarization in cold plasmas.
    Sánchez-Arriaga G; Siminos E; Saxena V; Kourakis I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033102. PubMed ID: 25871219
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analytic and numerical solutions to the seismic wave equation in continuous media.
    Walters SJ; Forbes LK; Reading AM
    Proc Math Phys Eng Sci; 2020 Nov; 476(2243):20200636. PubMed ID: 33362424
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-resolution numerical simulations of electrophoresis using the Fourier pseudo-spectral method.
    Gupta P; Bahga SS
    Electrophoresis; 2021 Apr; 42(7-8):890-898. PubMed ID: 33300129
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional lattice Boltzmann flux solver for simulation of fluid-solid conjugate heat transfer problems with curved boundary.
    Yang LM; Shu C; Chen Z; Wu J
    Phys Rev E; 2020 May; 101(5-1):053309. PubMed ID: 32575276
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-order implicit particle-in-cell method for plasma simulations at solid densities.
    Wu D; Yu W; Fritzsche S; He XT
    Phys Rev E; 2019 Jul; 100(1-1):013207. PubMed ID: 31499835
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pseudospectral Maxwell solvers for an accurate modeling of Doppler harmonic generation on plasma mirrors with particle-in-cell codes.
    Blaclard G; Vincenti H; Lehe R; Vay JL
    Phys Rev E; 2017 Sep; 96(3-1):033305. PubMed ID: 29346903
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lattice models for large-scale simulations of coherent wave scattering.
    Wang S; Teixeira FL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016701. PubMed ID: 14995749
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exact solution of Maxwell's equations for optical interactions with a macroscopic random medium.
    Tseng SH; Greene JH; Taflove A; Maitland D; Backman V; Walsh JT
    Opt Lett; 2004 Jun; 29(12):1393-5. PubMed ID: 15233446
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Full-vector mode solver for bending waveguides based on the finite-difference frequency-domain method in cylindrical coordinate systems.
    Xiao J; Ni H; Sun X
    Opt Lett; 2008 Aug; 33(16):1848-50. PubMed ID: 18709109
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Finite-volume WENO scheme for viscous compressible multicomponent flows.
    Coralic V; Colonius T
    J Comput Phys; 2014 Oct; 274():95-121. PubMed ID: 25110358
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two-dimensional s-polarized solitary waves in relativistic plasmas. I. The fluid plasma model.
    Sánchez-Arriaga G; Lefebvre E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036403. PubMed ID: 22060509
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient solution of Maxwell's equations for optical fibers with arbitrary refractive-index profiles.
    Eoll CK; Goldring T; Lucas TR
    Opt Lett; 1987 Oct; 12(10):841-3. PubMed ID: 19741891
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical solution of the time-dependent Maxwell's equations for random dielectric media.
    Harshawardhan W; Su Q; Grobe R
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Dec; 62(6 Pt B):8705-12. PubMed ID: 11138172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.