These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 33542288)

  • 1. Skyrmion ratchet propagation: utilizing the skyrmion Hall effect in AC racetrack storage devices.
    Göbel B; Mertig I
    Sci Rep; 2021 Feb; 11(1):3020. PubMed ID: 33542288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Helium Ions Put Magnetic Skyrmions on the Track.
    Juge R; Bairagi K; Rana KG; Vogel J; Sall M; Mailly D; Pham VT; Zhang Q; Sisodia N; Foerster M; Aballe L; Belmeguenai M; Roussigné Y; Auffret S; Buda-Prejbeanu LD; Gaudin G; Ravelosona D; Boulle O
    Nano Lett; 2021 Apr; 21(7):2989-2996. PubMed ID: 33740371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current-driven dynamics and ratchet effect of skyrmion bubbles in a ferrimagnetic insulator.
    Vélez S; Ruiz-Gómez S; Schaab J; Gradauskaite E; Wörnle MS; Welter P; Jacot BJ; Degen CL; Trassin M; Fiebig M; Gambardella P
    Nat Nanotechnol; 2022 Aug; 17(8):834-841. PubMed ID: 35788187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical writing, deleting, reading, and moving of magnetic skyrmioniums in a racetrack device.
    Göbel B; Schäffer AF; Berakdar J; Mertig I; Parkin SSP
    Sci Rep; 2019 Aug; 9(1):12119. PubMed ID: 31431688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vanishing skyrmion Hall effect at the angular momentum compensation temperature of a ferrimagnet.
    Hirata Y; Kim DH; Kim SK; Lee DK; Oh SH; Kim DY; Nishimura T; Okuno T; Futakawa Y; Yoshikawa H; Tsukamoto A; Tserkovnyak Y; Shiota Y; Moriyama T; Choe SB; Lee KJ; Ono T
    Nat Nanotechnol; 2019 Mar; 14(3):232-236. PubMed ID: 30664756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zero-Field Nucleation and Fast Motion of Skyrmions Induced by Nanosecond Current Pulses in a Ferrimagnetic Thin Film.
    Quessab Y; Xu JW; Cogulu E; Finizio S; Raabe J; Kent AD
    Nano Lett; 2022 Aug; 22(15):6091-6097. PubMed ID: 35877983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Realization of a Skyrmion Circulator.
    Song C; Zhao L; Liu J; Jiang W
    Nano Lett; 2022 Dec; 22(23):9638-9644. PubMed ID: 36411254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A strategy for the design of skyrmion racetrack memories.
    Tomasello R; Martinez E; Zivieri R; Torres L; Carpentieri M; Finocchio G
    Sci Rep; 2014 Oct; 4():6784. PubMed ID: 25351135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory.
    Zhang X; Zhao GP; Fangohr H; Liu JP; Xia WX; Xia J; Morvan FJ
    Sci Rep; 2015 Jan; 5():7643. PubMed ID: 25560935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current-driven dynamics of skyrmions stabilized in MnSi nanowires revealed by topological Hall effect.
    Liang D; DeGrave JP; Stolt MJ; Tokura Y; Jin S
    Nat Commun; 2015 Sep; 6():8217. PubMed ID: 26400204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleation and manipulation of single skyrmions using spin-polarized currents in antiferromagnetic skyrmion-based racetrack memories.
    Belrhazi H; El Hafidi M
    Sci Rep; 2022 Sep; 12(1):15225. PubMed ID: 36076059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current-driven dynamics and inhibition of the skyrmion Hall effect of ferrimagnetic skyrmions in GdFeCo films.
    Woo S; Song KM; Zhang X; Zhou Y; Ezawa M; Liu X; Finizio S; Raabe J; Lee NJ; Kim SI; Park SY; Kim Y; Kim JY; Lee D; Lee O; Choi JW; Min BC; Koo HC; Chang J
    Nat Commun; 2018 Mar; 9(1):959. PubMed ID: 29511179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guided current-induced skyrmion motion in 1D potential well.
    Purnama I; Gan WL; Wong DW; Lew WS
    Sci Rep; 2015 May; 5():10620. PubMed ID: 26024469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic skyrmion bundles and their current-driven dynamics.
    Tang J; Wu Y; Wang W; Kong L; Lv B; Wei W; Zang J; Tian M; Du H
    Nat Nanotechnol; 2021 Oct; 16(10):1086-1091. PubMed ID: 34341518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Improved Racetrack Structure for Transporting a Skyrmion.
    Lai P; Zhao GP; Tang H; Ran N; Wu SQ; Xia J; Zhang X; Zhou Y
    Sci Rep; 2017 Mar; 7():45330. PubMed ID: 28358009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diameter-independent skyrmion Hall angle observed in chiral magnetic multilayers.
    Zeissler K; Finizio S; Barton C; Huxtable AJ; Massey J; Raabe J; Sadovnikov AV; Nikitov SA; Brearton R; Hesjedal T; van der Laan G; Rosamond MC; Linfield EH; Burnell G; Marrows CH
    Nat Commun; 2020 Jan; 11(1):428. PubMed ID: 31969569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect.
    Mochizuki M; Yu XZ; Seki S; Kanazawa N; Koshibae W; Zang J; Mostovoy M; Tokura Y; Nagaosa N
    Nat Mater; 2014 Mar; 13(3):241-6. PubMed ID: 24464244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical Generation and Deletion of Magnetic Skyrmion-Bubbles via Vertical Current Injection.
    Yang S; Moon KW; Ju TS; Kim C; Kim HJ; Kim J; Tran BX; Hong JI; Hwang C
    Adv Mater; 2021 Nov; 33(45):e2104406. PubMed ID: 34569658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mirroring Skyrmions in Synthetic Antiferromagnets via Modular Design.
    Deng P; Zhuo F; Li H; Cheng Z
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deriving the skyrmion Hall angle from skyrmion lattice dynamics.
    Brearton R; Turnbull LA; Verezhak JAT; Balakrishnan G; Hatton PD; van der Laan G; Hesjedal T
    Nat Commun; 2021 May; 12(1):2723. PubMed ID: 33976177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.