BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 33542384)

  • 1. Evaluation of quasi-static and dynamic nanomechanical properties of bone-metastatic breast cancer cells using a nanoclay cancer testbed.
    Kar S; Katti DR; Katti KS
    Sci Rep; 2021 Feb; 11(1):3096. PubMed ID: 33542384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanobiological evaluation of prostate cancer metastasis to bone using an in vitro prostate cancer testbed.
    Molla MS; Katti DR; Katti KS
    J Biomech; 2021 Jan; 114():110142. PubMed ID: 33290947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue-engineered nanoclay-based 3D in vitro breast cancer model for studying breast cancer metastasis to bone.
    Kar S; Molla MS; Katti DR; Katti KS
    J Tissue Eng Regen Med; 2019 Feb; 13(2):119-130. PubMed ID: 30466156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical properties of cancer cytoskeleton depend on actin filaments to microtubules content: investigating different grades of colon cancer cell lines.
    Pachenari M; Seyedpour SM; Janmaleki M; Babazadeh Shayan S; Taranejoo S; Hosseinkhani H
    J Biomech; 2014 Jan; 47(2):373-9. PubMed ID: 24315289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AFM nanoindentation detection of the elastic modulus of tongue squamous carcinoma cells with different metastatic potentials.
    Zhou Z; Zheng C; Li S; Zhou X; Liu Z; He Q; Zhang N; Ngan A; Tang B; Wang A
    Nanomedicine; 2013 Oct; 9(7):864-74. PubMed ID: 23579203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro.
    Yoneda T; Williams PJ; Hiraga T; Niewolna M; Nishimura R
    J Bone Miner Res; 2001 Aug; 16(8):1486-95. PubMed ID: 11499871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytoskeletal Actin Structure in Osteosarcoma Cells Determines Metastatic Phenotype via Regulating Cell Stiffness, Migration, and Transmigration.
    Kita K; Asanuma K; Okamoto T; Kawamoto E; Nakamura K; Hagi T; Nakamura T; Shimaoka M; Sudo A
    Curr Issues Mol Biol; 2021 Sep; 43(3):1255-1266. PubMed ID: 34698103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small size fullerenol nanoparticles suppress lung metastasis of breast cancer cell by disrupting actin dynamics.
    Qin Y; Chen K; Gu W; Dong X; Lei R; Chang Y; Bai X; Xia S; Zeng L; Zhang J; Ma S; Li J; Li S; Xing G
    J Nanobiotechnology; 2018 Jun; 16(1):54. PubMed ID: 29935539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone interface modulates drug resistance in breast cancer bone metastasis.
    Kar S; Katti DR; Katti KS
    Colloids Surf B Biointerfaces; 2020 Nov; 195():111224. PubMed ID: 32634713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Whole-body bone scintigraphy in the diagnosis and follow-up of the evolution of breast cancer].
    Muşat E; Stefănescu C; Rusu V
    Rev Med Chir Soc Med Nat Iasi; 1999; 103(1-2):163-9. PubMed ID: 10756905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumor-derived platelet-derived growth factor-BB plays a critical role in osteosclerotic bone metastasis in an animal model of human breast cancer.
    Yi B; Williams PJ; Niewolna M; Wang Y; Yoneda T
    Cancer Res; 2002 Feb; 62(3):917-23. PubMed ID: 11830552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Animal Models of Breast Cancer Bone Metastasis.
    Tulotta C; Groenewoud A; Snaar-Jagalska BE; Ottewell P
    Methods Mol Biol; 2019; 1914():309-330. PubMed ID: 30729473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asperolide A prevents bone metastatic breast cancer via the PI3K/AKT/mTOR/c-Fos/NFATc1 signaling pathway.
    Jiang W; Rixiati Y; Huang H; Shi Y; Huang C; Jiao B
    Cancer Med; 2020 Nov; 9(21):8173-8185. PubMed ID: 32976685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wnt/β-Catenin Signaling Pathway Regulates Osteogenesis for Breast Cancer Bone Metastasis: Experiments in an
    Kar S; Jasuja H; Katti DR; Katti KS
    ACS Biomater Sci Eng; 2020 May; 6(5):2600-2611. PubMed ID: 33463270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High expression of FBP17 in invasive breast cancer cells promotes invadopodia formation.
    Suman P; Mishra S; Chander H
    Med Oncol; 2018 Apr; 35(5):71. PubMed ID: 29651632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental bone metastasis model of the oral and maxillofacial region.
    Sasaki A; Yoneda T; Terakado N; Alcalde RE; Suzuki A; Matsumura T
    Anticancer Res; 1998; 18(3A):1579-84. PubMed ID: 9673373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the elastic Young's modulus and cytotoxicity variations in fibroblasts exposed to carbon-based nanomaterials.
    Pastrana HF; Cartagena-Rivera AX; Raman A; Ávila A
    J Nanobiotechnology; 2019 Feb; 17(1):32. PubMed ID: 30797235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. E-cadherin expression in human breast cancer cells suppresses the development of osteolytic bone metastases in an experimental metastasis model.
    Mbalaviele G; Dunstan CR; Sasaki A; Williams PJ; Mundy GR; Yoneda T
    Cancer Res; 1996 Sep; 56(17):4063-70. PubMed ID: 8752180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteoblastic metastases from breast carcinoma with false-negative bone scan.
    Munk PL; Poon PY; O'Connell JX; Janzen D; Coupland D; Kwong JS; Gelmon K; Worsley D
    Skeletal Radiol; 1997 Jul; 26(7):434-7. PubMed ID: 9259104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breast cancer and bone metastases: the association of axial skeleton MRI findings with skeletal-related events and survival.
    van der Pol CB; Schweitzer ME; Di Primio G; Sampaio ML; Kielar A; Clemons M; Jaberi A
    Breast Cancer Res Treat; 2014 Aug; 146(3):583-9. PubMed ID: 25007963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.