BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 33543268)

  • 1. The barrier to radial oxygen loss impedes the apoplastic entry of iron into the roots of Urochloa humidicola.
    Jiménez JC; Clode PL; Signorelli S; Veneklaas EJ; Colmer TD; Kotula L
    J Exp Bot; 2021 Apr; 72(8):3279-3293. PubMed ID: 33543268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Root-zone hypoxia reduces growth of the tropical forage grass Urochloa humidicola in high-nutrient but not low-nutrient conditions.
    Jiménez JC; Kotula L; Veneklaas EJ; Colmer TD
    Ann Bot; 2019 Nov; 124(6):1019-1032. PubMed ID: 31152584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A barrier to radial oxygen loss helps the root system cope with waterlogging-induced hypoxia.
    Ejiri M; Fukao T; Miyashita T; Shiono K
    Breed Sci; 2021 Feb; 71(1):40-50. PubMed ID: 33762875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exogenous abscisic acid induces the formation of a suberized barrier to radial oxygen loss in adventitious roots of barley (Hordeum vulgare).
    Shiono K; Matsuura H
    Ann Bot; 2024 May; 133(7):931-940. PubMed ID: 38448365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A major locus involved in the formation of the radial oxygen loss barrier in adventitious roots of teosinte Zea nicaraguensis is located on the short-arm of chromosome 3.
    Watanabe K; Takahashi H; Sato S; Nishiuchi S; Omori F; Malik AI; Colmer TD; Mano Y; Nakazono M
    Plant Cell Environ; 2017 Feb; 40(2):304-316. PubMed ID: 27762444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prevention of Radial Oxygen Loss Is Associated With Exodermal Suberin Along Adventitious Roots of Annual Wild Species of
    Ejiri M; Shiono K
    Front Plant Sci; 2019; 10():254. PubMed ID: 30915090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution.
    Kotula L; Ranathunge K; Schreiber L; Steudle E
    J Exp Bot; 2009; 60(7):2155-67. PubMed ID: 19443620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays).
    Abiko T; Kotula L; Shiono K; Malik AI; Colmer TD; Nakazono M
    Plant Cell Environ; 2012 Sep; 35(9):1618-30. PubMed ID: 22471697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does suberin accumulation in plant roots contribute to waterlogging tolerance?
    Watanabe K; Nishiuchi S; Kulichikhin K; Nakazono M
    Front Plant Sci; 2013; 4():178. PubMed ID: 23785371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The barrier to radial oxygen loss protects roots against hydrogen sulphide intrusion and its toxic effect.
    Peralta Ogorek LL; Takahashi H; Nakazono M; Pedersen O
    New Phytol; 2023 Jun; 238(5):1825-1837. PubMed ID: 36928886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anatomical and biochemical characterisation of a barrier to radial O
    Kotula L; Schreiber L; Colmer TD; Nakazono M
    Funct Plant Biol; 2017 Sep; 44(9):845-857. PubMed ID: 32480613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low nitrate under waterlogging triggers exodermal suberization to form a barrier to radial oxygen loss in rice roots.
    Shiono K; Ejiri M; Sawazaki Y; Egishi Y; Tsunoda T
    Plant Physiol; 2024 May; ():. PubMed ID: 38761404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Root length is proxy for high-throughput screening of waterlogging tolerance in Urochloa spp. grasses.
    de la Cruz Jiménez J; Cardoso JA; Kotula L; Veneklaas EJ; Pedersen O; Colmer TD
    Funct Plant Biol; 2021 Mar; 48(4):411-421. PubMed ID: 33287947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.).
    Colmer TD
    Ann Bot; 2003 Jan; 91 Spec No(2):301-9. PubMed ID: 12509350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lateral roots, in addition to adventitious roots, form a barrier to radial oxygen loss in Zea nicaraguensis and a chromosome segment introgression line in maize.
    Pedersen O; Nakayama Y; Yasue H; Kurokawa Y; Takahashi H; Heidi Floytrup A; Omori F; Mano Y; David Colmer T; Nakazono M
    New Phytol; 2021 Jan; 229(1):94-105. PubMed ID: 31990995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abscisic acid is required for exodermal suberization to form a barrier to radial oxygen loss in the adventitious roots of rice (Oryza sativa).
    Shiono K; Yoshikawa M; Kreszies T; Yamada S; Hojo Y; Matsuura T; Mori IC; Schreiber L; Yoshioka T
    New Phytol; 2022 Jan; 233(2):655-669. PubMed ID: 34725822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apoplastic barriers to radial oxygen loss and solute penetration: a chemical and functional comparison of the exodermis of two wetland species, Phragmites australis and Glyceria maxima.
    Soukup A; Armstrong W; Schreiber L; Franke R; Votrubová O
    New Phytol; 2007; 173(2):264-78. PubMed ID: 17204074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water permeability and reflection coefficient of the outer part of young rice roots are differently affected by closure of water channels (aquaporins) or blockage of apoplastic pores.
    Ranathunge K; Kotula L; Steudle E; Lafitte R
    J Exp Bot; 2004 Feb; 55(396):433-47. PubMed ID: 14739266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel functions of the root barrier to radial oxygen loss - radial diffusion resistance to H
    Peralta Ogorek LL; Pellegrini E; Pedersen O
    New Phytol; 2021 Aug; 231(4):1365-1376. PubMed ID: 34013633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rice acclimation to soil flooding: Low concentrations of organic acids can trigger a barrier to radial oxygen loss in roots.
    Colmer TD; Kotula L; Malik AI; Takahashi H; Konnerup D; Nakazono M; Pedersen O
    Plant Cell Environ; 2019 Jul; 42(7):2183-2197. PubMed ID: 30989660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.