These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 33543341)
1. Monitoring nitrate reduction: hydrogeochemistry and clogging potential in raw water wells. Ortmeyer F; Volkova K; Wisotzky F; Wohnlich S; Banning A Environ Monit Assess; 2021 Feb; 193(3):112. PubMed ID: 33543341 [TBL] [Abstract][Full Text] [Related]
2. Hydrochemical evaluation and identification of geochemical processes in the shallow and deep wells in the Ramganga Sub-Basin, India. Rajmohan N; Patel N; Singh G; Amarasinghe UA Environ Sci Pollut Res Int; 2017 Sep; 24(26):21459-21475. PubMed ID: 28744685 [TBL] [Abstract][Full Text] [Related]
3. Hydrogeochemical characterization and groundwater quality assessment in intruded coastal brine aquifers (Laizhou Bay, China). Zhang X; Miao J; Hu BX; Liu H; Zhang H; Ma Z Environ Sci Pollut Res Int; 2017 Sep; 24(26):21073-21090. PubMed ID: 28730358 [TBL] [Abstract][Full Text] [Related]
4. Denitrification in the vadose zone: Modelling with percolating water prognosis and denitrification potential. Lenhart S; Ortmeyer F; Banning A J Contam Hydrol; 2021 Oct; 242():103843. PubMed ID: 34087531 [TBL] [Abstract][Full Text] [Related]
5. [Hydrogeochemical Investigations of Groundwater in the Lingbei Area, Leizhou Peninsula]. Zhang HX; Wu Y; Luo WY; Chen W; Liu HQ Huan Jing Ke Xue; 2020 Nov; 41(11):4924-4935. PubMed ID: 33124236 [TBL] [Abstract][Full Text] [Related]
6. Characteristics and processes of hydrogeochemical evolution induced by long-term mining activities in karst aquifers, southwestern China. Huang H; Chen Z; Wang T; Zhang L; Zhou G; Sun B; Wang Y Environ Sci Pollut Res Int; 2019 Oct; 26(29):30055-30068. PubMed ID: 31414390 [TBL] [Abstract][Full Text] [Related]
7. Groundwater geochemistry in the Alisadr, Hamadan, western Iran. Jalali M Environ Monit Assess; 2010 Jul; 166(1-4):359-69. PubMed ID: 19496011 [TBL] [Abstract][Full Text] [Related]
8. Delineating the impact of urbanization on the hydrochemistry and quality of groundwater wells in Aba, Nigeria. Ijioma UD J Contam Hydrol; 2021 Jun; 240():103792. PubMed ID: 33827000 [TBL] [Abstract][Full Text] [Related]
9. Temporal variations of groundwater quality in the Western Jianghan Plain, China. Niu B; Wang H; Loáiciga HA; Hong S; Shao W Sci Total Environ; 2017 Feb; 578():542-550. PubMed ID: 27847182 [TBL] [Abstract][Full Text] [Related]
10. [Indicators of Groundwater Evolution Processes Based on Hydrochemistry and Environmental Isotopes: A Case Study of the Dongyuan Drinking Water Source Area in Ji'nan City]. Zhang Y; Su CL; Ma YH; Liu WJ Huan Jing Ke Xue; 2019 Jun; 40(6):2667-2674. PubMed ID: 31854658 [TBL] [Abstract][Full Text] [Related]
11. Spatial and temporal variations in the geochemistry of shallow groundwater contaminated with nitrate at a residential site. Atekwana EA; Geyer CJ Environ Sci Pollut Res Int; 2018 Sep; 25(27):27155-27172. PubMed ID: 30022393 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms of arsenic contamination associated with hydrochemical characteristics in coastal alluvial aquifers using multivariate statistical technique and hydrogeochemical modeling: a case study in Rayong province, eastern Thailand. Boonkaewwan S; Sonthiphand P; Chotpantarat S Environ Geochem Health; 2021 Jan; 43(1):537-566. PubMed ID: 33044731 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the hydrochemistry of water resources of the Weibei Plain, Northern China, as well as an assessment of the risk of high groundwater nitrate levels to human health. Liu J; Peng Y; Li C; Gao Z; Chen S Environ Pollut; 2021 Jan; 268(Pt B):115947. PubMed ID: 33172697 [TBL] [Abstract][Full Text] [Related]
14. Distribution and hydrogeochemical behavior of arsenic enriched groundwater in the sedimentary aquifer comparison between Datong Basin (China) and Kushtia District (Bangladesh). Huq ME; Su C; Fahad S; Li J; Sarven MS; Liu R Environ Sci Pollut Res Int; 2018 Jun; 25(16):15830-15843. PubMed ID: 29582329 [TBL] [Abstract][Full Text] [Related]
15. Preliminary assessment of groundwater hydrogeochemistry within Gilan, a northern province of Iran. Nematollahi MJ; Clark MJR; Ebrahimi P; Ebrahimi M Environ Monit Assess; 2018 Mar; 190(4):242. PubMed ID: 29572684 [TBL] [Abstract][Full Text] [Related]
16. Hydrochemical characteristics and nitrate health risk assessment of groundwater through seasonal variations from an intensive agricultural region of upper Krishna River basin, Telangana, India. Vaiphei SP; Kurakalva RM Ecotoxicol Environ Saf; 2021 Apr; 213():112073. PubMed ID: 33639561 [TBL] [Abstract][Full Text] [Related]
17. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China. Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934 [TBL] [Abstract][Full Text] [Related]
18. Tracking nitrate sources in groundwater and associated health risk for rural communities in the White Volta River basin of Ghana using isotopic approach (δ Anornu G; Gibrilla A; Adomako D Sci Total Environ; 2017 Dec; 603-604():687-698. PubMed ID: 28434612 [TBL] [Abstract][Full Text] [Related]
19. Geochemistry and sources of fluoride and nitrate contamination of groundwater in Lar area, south Iran. Rezaei M; Nikbakht M; Shakeri A Environ Sci Pollut Res Int; 2017 Jun; 24(18):15471-15487. PubMed ID: 28512707 [TBL] [Abstract][Full Text] [Related]
20. Nitrogen source track and associated isotopic dynamic characteristic in a complex ecosystem: A case study of a subtropical watershed, China. Hao Z; Zhang X; Gao Y; Xu Z; Yang F; Wen X; Wang Y Environ Pollut; 2018 May; 236():177-187. PubMed ID: 29414338 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]