BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 33543442)

  • 1. Deep Learning-based Classification of Resting-state fMRI Independent-component Analysis.
    Nozais V; Boutinaud P; Verrecchia V; Gueye MF; Hervé PY; Tzourio C; Mazoyer B; Joliot M
    Neuroinformatics; 2021 Oct; 19(4):619-637. PubMed ID: 33543442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidating the complementarity of resting-state networks derived from dynamic [
    Ionescu TM; Amend M; Hafiz R; Biswal BB; Wehrl HF; Herfert K; Pichler BJ
    Neuroimage; 2021 Aug; 236():118045. PubMed ID: 33848625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Developing Human Connectome Project: typical and disrupted perinatal functional connectivity.
    Eyre M; Fitzgibbon SP; Ciarrusta J; Cordero-Grande L; Price AN; Poppe T; Schuh A; Hughes E; O'Keeffe C; Brandon J; Cromb D; Vecchiato K; Andersson J; Duff EP; Counsell SJ; Smith SM; Rueckert D; Hajnal JV; Arichi T; O'Muircheartaigh J; Batalle D; Edwards AD
    Brain; 2021 Aug; 144(7):2199-2213. PubMed ID: 33734321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the spatial variability in the major resting-state networks across human brain functional atlases.
    Doucet GE; Lee WH; Frangou S
    Hum Brain Mapp; 2019 Oct; 40(15):4577-4587. PubMed ID: 31322303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain-wide functional diffuse optical tomography of resting state networks.
    Khan AF; Zhang F; Yuan H; Ding L
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33946052
    [No Abstract]   [Full Text] [Related]  

  • 6. Resting state network estimation in individual subjects.
    Hacker CD; Laumann TO; Szrama NP; Baldassarre A; Snyder AZ; Leuthardt EC; Corbetta M
    Neuroimage; 2013 Nov; 82():616-633. PubMed ID: 23735260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapidly spreading seizures arise from large-scale functional brain networks in focal epilepsy.
    Uehara T; Shigeto H; Mukaino T; Yokoyama J; Okadome T; Yamasaki R; Ogata K; Mukae N; Sakata A; Tobimatsu S; Kira JI
    Neuroimage; 2021 Aug; 237():118104. PubMed ID: 33933597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aberrant functional connectivity of resting state networks in transient ischemic attack.
    Li R; Wang S; Zhu L; Guo J; Zeng L; Gong Q; He L; Chen H
    PLoS One; 2013; 8(8):e71009. PubMed ID: 23951069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Consistency of network modules in resting-state FMRI connectome data.
    Moussa MN; Steen MR; Laurienti PJ; Hayasaka S
    PLoS One; 2012; 7(8):e44428. PubMed ID: 22952978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying and characterizing resting state networks in temporally dynamic functional connectomes.
    Zhang X; Li X; Jin C; Chen H; Li K; Zhu D; Jiang X; Zhang T; Lv J; Hu X; Han J; Zhao Q; Guo L; Li L; Liu T
    Brain Topogr; 2014 Nov; 27(6):747-65. PubMed ID: 24903106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
    James GA; Hazaroglu O; Bush KA
    Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A deep learning based approach identifies regions more relevant than resting-state networks to the prediction of general intelligence from resting-state fMRI.
    Hebling Vieira B; Dubois J; Calhoun VD; Garrido Salmon CE
    Hum Brain Mapp; 2021 Dec; 42(18):5873-5887. PubMed ID: 34587333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing resting-state networks in Parkinson's disease: A multi-aspect functional connectivity study.
    Ghasemi M; Foroutannia A; Babajani-Feremi A
    Brain Behav; 2021 May; 11(5):e02101. PubMed ID: 33784022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward a complete taxonomy of resting state networks across wakefulness and sleep: an assessment of spatially distinct resting state networks using independent component analysis.
    Houldin E; Fang Z; Ray LB; Owen AM; Fogel SM
    Sleep; 2019 Mar; 42(3):. PubMed ID: 30476346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic influences on resting-state functional networks: A twin study.
    Fu Y; Ma Z; Hamilton C; Liang Z; Hou X; Ma X; Hu X; He Q; Deng W; Wang Y; Zhao L; Meng H; Li T; Zhang N
    Hum Brain Mapp; 2015 Oct; 36(10):3959-72. PubMed ID: 26147340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atlasing white matter and grey matter joint contributions to resting-state networks in the human brain.
    Nozais V; Forkel SJ; Petit L; Talozzi L; Corbetta M; Thiebaut de Schotten M; Joliot M
    Commun Biol; 2023 Jul; 6(1):726. PubMed ID: 37452124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating the effective connectivity of resting state networks using conditional Granger causality.
    Liao W; Mantini D; Zhang Z; Pan Z; Ding J; Gong Q; Yang Y; Chen H
    Biol Cybern; 2010 Jan; 102(1):57-69. PubMed ID: 19937337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A NIRS-fMRI study of resting state network.
    Sasai S; Homae F; Watanabe H; Sasaki AT; Tanabe HC; Sadato N; Taga G
    Neuroimage; 2012 Oct; 63(1):179-93. PubMed ID: 22713670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linking functional connectivity and dynamic properties of resting-state networks.
    Lee WH; Frangou S
    Sci Rep; 2017 Nov; 7(1):16610. PubMed ID: 29192157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Handedness-dependent functional organizational patterns within the bilateral vestibular cortical network revealed by fMRI connectivity based parcellation.
    Kirsch V; Boegle R; Keeser D; Kierig E; Ertl-Wagner B; Brandt T; Dieterich M
    Neuroimage; 2018 Sep; 178():224-237. PubMed ID: 29787866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.