These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 33543527)

  • 21. High-speed domain wall racetracks in a magnetic insulator.
    Vélez S; Schaab J; Wörnle MS; Müller M; Gradauskaite E; Welter P; Gutgsell C; Nistor C; Degen CL; Trassin M; Fiebig M; Gambardella P
    Nat Commun; 2019 Oct; 10(1):4750. PubMed ID: 31628309
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tuning the Dzyaloshinskii-Moriya interaction in Pt/Co/MgO heterostructures through the MgO thickness.
    Cao A; Zhang X; Koopmans B; Peng S; Zhang Y; Wang Z; Yan S; Yang H; Zhao W
    Nanoscale; 2018 Jul; 10(25):12062-12067. PubMed ID: 29911217
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chiral spin torque at magnetic domain walls.
    Ryu KS; Thomas L; Yang SH; Parkin S
    Nat Nanotechnol; 2013 Jul; 8(7):527-33. PubMed ID: 23770808
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthetic ferrimagnet nanowires with very low critical current density for coupled domain wall motion.
    Lepadatu S; Saarikoski H; Beacham R; Benitez MJ; Moore TA; Burnell G; Sugimoto S; Yesudas D; Wheeler MC; Miguel J; Dhesi SS; McGrouther D; McVitie S; Tatara G; Marrows CH
    Sci Rep; 2017 May; 7(1):1640. PubMed ID: 28487513
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel chiral magnetic domain wall structure in Fe/Ni/Cu(001) films.
    Chen G; Zhu J; Quesada A; Li J; N'Diaye AT; Huo Y; Ma TP; Chen Y; Kwon HY; Won C; Qiu ZQ; Schmid AK; Wu YZ
    Phys Rev Lett; 2013 Apr; 110(17):177204. PubMed ID: 23679766
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rashba Torque Driven Domain Wall Motion in Magnetic Helices.
    Pylypovskyi OV; Sheka DD; Kravchuk VP; Yershov KV; Makarov D; Gaididei Y
    Sci Rep; 2016 Mar; 6():23316. PubMed ID: 27008975
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chiral domain wall motion in unit-cell thick perpendicularly magnetized Heusler films prepared by chemical templating.
    Filippou PC; Jeong J; Ferrante Y; Yang SH; Topuria T; Samant MG; Parkin SSP
    Nat Commun; 2018 Nov; 9(1):4653. PubMed ID: 30405099
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unlocking Bloch-type chirality in ultrathin magnets through uniaxial strain.
    Chen G; N'Diaye AT; Kang SP; Kwon HY; Won C; Wu Y; Qiu ZQ; Schmid AK
    Nat Commun; 2015 Mar; 6():6598. PubMed ID: 25798953
    [TBL] [Abstract][Full Text] [Related]  

  • 29. XMCD and
    Samardak AS; Ognev AV; Kolesnikov AG; Stebliy ME; Samardak VY; Iliushin IG; Pervishko AA; Yudin D; Platunov M; Ono T; Wilhelm F; Rogalev A
    Phys Chem Chem Phys; 2022 Apr; 24(14):8225-8232. PubMed ID: 35319030
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials.
    Nayak AK; Kumar V; Ma T; Werner P; Pippel E; Sahoo R; Damay F; Rößler UK; Felser C; Parkin SSP
    Nature; 2017 Aug; 548(7669):561-566. PubMed ID: 28846999
    [TBL] [Abstract][Full Text] [Related]  

  • 31. All-electric magnetization switching and Dzyaloshinskii-Moriya interaction in WTe
    Shi S; Liang S; Zhu Z; Cai K; Pollard SD; Wang Y; Wang J; Wang Q; He P; Yu J; Eda G; Liang G; Yang H
    Nat Nanotechnol; 2019 Oct; 14(10):945-949. PubMed ID: 31427750
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interface control of the magnetic chirality in CoFeB/MgO heterostructures with heavy-metal underlayers.
    Torrejon J; Kim J; Sinha J; Mitani S; Hayashi M; Yamanouchi M; Ohno H
    Nat Commun; 2014 Aug; 5():4655. PubMed ID: 25130480
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory.
    Zhang X; Zhao GP; Fangohr H; Liu JP; Xia WX; Xia J; Morvan FJ
    Sci Rep; 2015 Jan; 5():7643. PubMed ID: 25560935
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bloch Chirality Induced by an Interlayer Dzyaloshinskii-Moriya Interaction in Ferromagnetic Multilayers.
    Pollard SD; Garlow JA; Kim KW; Cheng S; Cai K; Zhu Y; Yang H
    Phys Rev Lett; 2020 Nov; 125(22):227203. PubMed ID: 33315441
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Imaging and Tailoring the Chirality of Domain Walls in Magnetic Films.
    Chen G; Schmid AK
    Adv Mater; 2015 Oct; 27(38):5738-43. PubMed ID: 26032892
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interfacial Dzyaloshinskii-Moriya interaction arising from rare-earth orbital magnetism in insulating magnetic oxides.
    Caretta L; Rosenberg E; Büttner F; Fakhrul T; Gargiani P; Valvidares M; Chen Z; Reddy P; Muller DA; Ross CA; Beach GSD
    Nat Commun; 2020 Feb; 11(1):1090. PubMed ID: 32107384
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Symmetry-breaking interlayer Dzyaloshinskii-Moriya interactions in synthetic antiferromagnets.
    Fernández-Pacheco A; Vedmedenko E; Ummelen F; Mansell R; Petit D; Cowburn RP
    Nat Mater; 2019 Jul; 18(7):679-684. PubMed ID: 31160802
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Readable High-Speed Racetrack Memory Based on an Antiferromagnetically Coupled Soft/Hard Magnetic Bilayer.
    Yu Z; Wei C; Yi F; Xiong R
    Nanomaterials (Basel); 2019 Oct; 9(11):. PubMed ID: 31671575
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Non-equilibrium chiral domain wall dynamics excited by transverse magnetic field pulses.
    Cho J; Kim KW; Lee MJ; Lee HJ; Kim JS
    J Phys Condens Matter; 2021 Jan; 33(1):015803. PubMed ID: 33052891
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel domain wall dynamics in synthetic antiferromagnets.
    Yang SH; Parkin S
    J Phys Condens Matter; 2017 Aug; 29(30):303001. PubMed ID: 28640757
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.