BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33543619)

  • 1. Real-Time Optogenetics System for Controlling Gene Expression Using a Model-Based Design.
    Soffer G; Perry JM; Shih SCC
    Anal Chem; 2021 Feb; 93(6):3181-3188. PubMed ID: 33543619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mini Photobioreactors for in Vivo Real-Time Characterization and Evolutionary Tuning of Bacterial Optogenetic Circuit.
    Wang H; Yang YT
    ACS Synth Biol; 2017 Sep; 6(9):1793-1796. PubMed ID: 28532145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highlighter: An optogenetic system for high-resolution gene expression control in plants.
    Larsen B; Hofmann R; Camacho IS; Clarke RW; Lagarias JC; Jones AR; Jones AM
    PLoS Biol; 2023 Sep; 21(9):e3002303. PubMed ID: 37733664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shaping bacterial population behavior through computer-interfaced control of individual cells.
    Chait R; Ruess J; Bergmiller T; Tkačik G; Guet CC
    Nat Commun; 2017 Nov; 8(1):1535. PubMed ID: 29142298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Optogenetic Dual-Switch System for Rewiring Metabolic Flux for Polyhydroxybutyrate Production.
    Wang S; Luo Y; Jiang W; Li X; Qi Q; Liang Q
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35163885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards miniaturized closed-loop optogenetic stimulation devices.
    Edward ES; Kouzani AZ; Tye SJ
    J Neural Eng; 2018 Apr; 15(2):021002. PubMed ID: 29363618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Closed-loop optogenetic intervention in mice.
    Armstrong C; Krook-Magnuson E; Oijala M; Soltesz I
    Nat Protoc; 2013 Aug; 8(8):1475-1493. PubMed ID: 23845961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time optical manipulation of cardiac conduction in intact hearts.
    Scardigli M; Müllenbroich C; Margoni E; Cannazzaro S; Crocini C; Ferrantini C; Coppini R; Yan P; Loew LM; Campione M; Bocchi L; Giulietti D; Cerbai E; Poggesi C; Bub G; Pavone FS; Sacconi L
    J Physiol; 2018 Sep; 596(17):3841-3858. PubMed ID: 29989169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-inducible flux control of triosephosphate isomerase on glycolysis in Escherichia coli.
    Senoo S; Tandar ST; Kitamura S; Toya Y; Shimizu H
    Biotechnol Bioeng; 2019 Dec; 116(12):3292-3300. PubMed ID: 31429924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Closed-Loop Optogenetic Platform.
    Firfilionis D; Hutchings F; Tamadoni R; Walsh D; Turnbull M; Escobedo-Cousin E; Bailey RG; Gausden J; Patel A; Haci D; Liu Y; LeBeau FEN; Trevelyan A; Constandinou TG; O'Neill A; Kaiser M; Degenaar P; Jackson A
    Front Neurosci; 2021; 15():718311. PubMed ID: 34566564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic cybergenetic control of bacterial co-culture composition via optogenetic feedback.
    Gutiérrez Mena J; Kumar S; Khammash M
    Nat Commun; 2022 Aug; 13(1):4808. PubMed ID: 35973993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Multichannel Recording System with Optical Stimulation for Closed-Loop Optogenetic Experiments.
    Bartic C; Battaglia FP; Wang L; Nguyen TT; Cabral H; Navratilova Z
    Methods Mol Biol; 2016; 1408():333-44. PubMed ID: 26965134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell-Free Optogenetic Gene Expression System.
    Jayaraman P; Yeoh JW; Jayaraman S; Teh AY; Zhang J; Poh CL
    ACS Synth Biol; 2018 Apr; 7(4):986-994. PubMed ID: 29596741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Closed-loop optogenetic control of the dynamics of neural activity in non-human primates.
    Zaaimi B; Turnbull M; Hazra A; Wang Y; Gandara C; McLeod F; McDermott EE; Escobedo-Cousin E; Idil AS; Bailey RG; Tardio S; Patel A; Ponon N; Gausden J; Walsh D; Hutchings F; Kaiser M; Cunningham MO; Clowry GJ; LeBeau FEN; Constandinou TG; Baker SN; Donaldson N; Degenaar P; O'Neill A; Trevelyan AJ; Jackson A
    Nat Biomed Eng; 2023 Apr; 7(4):559-575. PubMed ID: 36266536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Compact Closed-Loop Optogenetics System Based on Artifact-Free Transparent Graphene Electrodes.
    Liu X; Lu Y; Iseri E; Shi Y; Kuzum D
    Front Neurosci; 2018; 12():132. PubMed ID: 29559885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optogenetic switch for controlling the central metabolic flux of Escherichia coli.
    Tandar ST; Senoo S; Toya Y; Shimizu H
    Metab Eng; 2019 Sep; 55():68-75. PubMed ID: 31207291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Closed-Loop Optogenetic Brain Interface.
    Pashaie R; Baumgartner R; Richner TJ; Brodnick SK; Azimipour M; Eliceiri KW; Williams JC
    IEEE Trans Biomed Eng; 2015 Oct; 62(10):2327-37. PubMed ID: 26011877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiology-Based Closed Loop Optogenetic Brain Stimulation Devices: Recent Developments and Future Prospects.
    Kumari LS; Kouzani AZ
    IEEE Rev Biomed Eng; 2023; 16():91-108. PubMed ID: 34995192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design strategies for dynamic closed-loop optogenetic neurocontrol in vivo.
    Bolus MF; Willats AA; Whitmire CJ; Rozell CJ; Stanley GB
    J Neural Eng; 2018 Apr; 15(2):026011. PubMed ID: 29300002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Embedded Real-Time Processing Platform for Optogenetic Neuroprosthetic Applications.
    Yan B; Nirenberg S
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):233-243. PubMed ID: 29035219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.