BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33543619)

  • 21. Hydrophobicity Regulation of Energy Acceptors Confined in Mesoporous Silica Enabled Reversible Activation of Optogenetics for Closed-Loop Glycemic Control.
    Lu Q; Wang Z; Bai S; Wang Y; Liao C; Sun Y; Zhang Y; Li W; Mei Q
    J Am Chem Soc; 2023 Mar; 145(10):5941-5951. PubMed ID: 36867047
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Open source modules for tracking animal behavior and closed-loop stimulation based on Open Ephys and Bonsai.
    Buccino AP; Lepperød ME; Dragly SA; Häfliger P; Fyhn M; Hafting T
    J Neural Eng; 2018 Oct; 15(5):055002. PubMed ID: 29946057
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiple-Site Diversification of Regulatory Sequences Enables Interspecies Operability of Genetic Devices.
    Hueso-Gil A; Nyerges Á; Pál C; Calles B; de Lorenzo V
    ACS Synth Biol; 2020 Jan; 9(1):104-114. PubMed ID: 31794196
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DIY optogenetics: Building, programming, and using the Light Plate Apparatus.
    Gerhardt KP; Castillo-Hair SM; Tabor JJ
    Methods Enzymol; 2019; 624():197-226. PubMed ID: 31370930
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A control-theoretic system identification framework and a real-time closed-loop clinical simulation testbed for electrical brain stimulation.
    Yang Y; Connolly AT; Shanechi MM
    J Neural Eng; 2018 Dec; 15(6):066007. PubMed ID: 30221624
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optogenetic Control by Pulsed Illumination.
    Hennemann J; Iwasaki RS; Grund TN; Diensthuber RP; Richter F; Möglich A
    Chembiochem; 2018 Jun; 19(12):1296-1304. PubMed ID: 29442428
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthetic Biological Approaches for Optogenetics and Tools for Transcriptional Light-Control in Bacteria.
    Baumschlager A; Khammash M
    Adv Biol (Weinh); 2021 May; 5(5):e2000256. PubMed ID: 34028214
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A photoconversion model for full spectral programming and multiplexing of optogenetic systems.
    Olson EJ; Tzouanas CN; Tabor JJ
    Mol Syst Biol; 2017 Apr; 13(4):926. PubMed ID: 28438832
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Building a Simple and Versatile Illumination System for Optogenetic Experiments.
    Kyriakakis P; Fernandez de Cossio L; Howard PW; Kouv S; Catanho M; Hu VJ; Kyriakakis R; Allen ME; Ma Y; Aguilar-Rivera M; Coleman TP
    J Vis Exp; 2021 Jan; (167):. PubMed ID: 33522514
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protocol to investigate the neural basis for copulation posture of Drosophila using a closed-loop real-time optogenetic system.
    Yamanouchi HM; Kamikouchi A; Tanaka R
    STAR Protoc; 2023 Dec; 4(4):102623. PubMed ID: 37788165
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Software Architecture to Mimic a Ventricular Tachycardia in Intact Murine Hearts by Means of an All-Optical Platform.
    Giardini F; Biasci V; Scardigli M; Pavone FS; Bub G; Sacconi L
    Methods Protoc; 2019 Jan; 2(1):. PubMed ID: 31164591
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automated optogenetic feedback control for precise and robust regulation of gene expression and cell growth.
    Milias-Argeitis A; Rullan M; Aoki SK; Buchmann P; Khammash M
    Nat Commun; 2016 Aug; 7():12546. PubMed ID: 27562138
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optogenetic feedback control of neural activity.
    Newman JP; Fong MF; Millard DC; Whitmire CJ; Stanley GB; Potter SM
    Elife; 2015 Jul; 4():e07192. PubMed ID: 26140329
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Real-time optogenetic control of intracellular protein concentration in microbial cell cultures.
    Melendez J; Patel M; Oakes BL; Xu P; Morton P; McClean MN
    Integr Biol (Camb); 2014 Mar; 6(3):366-72. PubMed ID: 24477515
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Real-time in vivo optogenetic neuromodulation and multielectrode electrophysiologic recording with NeuroRighter.
    Laxpati NG; Mahmoudi B; Gutekunst CA; Newman JP; Zeller-Townson R; Gross RE
    Front Neuroeng; 2014; 7():40. PubMed ID: 25404915
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Closed-loop experiments and brain machine interfaces with multiphoton microscopy.
    Hira R
    Neurophotonics; 2024 Jul; 11(3):033405. PubMed ID: 38375331
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Closed Loop Experiment Manager (CLEM)-An Open and Inexpensive Solution for Multichannel Electrophysiological Recordings and Closed Loop Experiments.
    Hazan H; Ziv NE
    Front Neurosci; 2017; 11():579. PubMed ID: 29093659
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bringing Light into Cell-Free Expression.
    Zhang P; Yang J; Cho E; Lu Y
    ACS Synth Biol; 2020 Aug; 9(8):2144-2153. PubMed ID: 32603590
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A low power flash-FPGA based brain implant micro-system of PID control.
    Lijuan Xia ; Fattah N; Soltan A; Jackson A; Chester G; Degenaar P
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():173-176. PubMed ID: 29059838
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.