These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33543619)

  • 41. In-vitro validation of a closed-loop optogenetic stimulation device.
    Edward ES; Kouzani AZ
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1130-1133. PubMed ID: 29060074
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bridging model and experiment in systems neuroscience with Cleo: the Closed-Loop, Electrophysiology, and Optophysiology simulation testbed.
    Johnsen KA; Cruzado NA; Menard ZC; Willats AA; Charles AS; Markowitz JE; Rozell CJ
    bioRxiv; 2024 Jul; ():. PubMed ID: 39026717
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Light-Activated Nuclear Translocation of Adeno-Associated Virus Nanoparticles Using Phytochrome B for Enhanced, Tunable, and Spatially Programmable Gene Delivery.
    Gomez EJ; Gerhardt K; Judd J; Tabor JJ; Suh J
    ACS Nano; 2016 Jan; 10(1):225-37. PubMed ID: 26618393
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Photocaged Arabinose: A Novel Optogenetic Switch for Rapid and Gradual Control of Microbial Gene Expression.
    Binder D; Bier C; Grünberger A; Drobietz D; Hage-Hülsmann J; Wandrey G; Büchs J; Kohlheyer D; Loeschcke A; Wiechert W; Jaeger KE; Pietruszka J; Drepper T
    Chembiochem; 2016 Feb; 17(4):296-9. PubMed ID: 26677142
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tetrode Recording from the Hippocampus of Behaving Mice Coupled with Four-Point-Irradiation Closed-Loop Optogenetics: A Technique to Study the Contribution of Hippocampal SWR Events to Learning.
    Rangel Guerrero DK; Donnett JG; Csicsvari J; Kovács KA
    eNeuro; 2018; 5(4):. PubMed ID: 30225344
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Painting with Rainbows: Patterning Light in Space, Time, and Wavelength for Multiphoton Optogenetic Sensing and Control.
    Brinks D; Adam Y; Kheifets S; Cohen AE
    Acc Chem Res; 2016 Nov; 49(11):2518-2526. PubMed ID: 27786461
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optogenetic control of gene expression in plants in the presence of ambient white light.
    Ochoa-Fernandez R; Abel NB; Wieland FG; Schlegel J; Koch LA; Miller JB; Engesser R; Giuriani G; Brandl SM; Timmer J; Weber W; Ott T; Simon R; Zurbriggen MD
    Nat Methods; 2020 Jul; 17(7):717-725. PubMed ID: 32601426
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Real-Time Image Processing Toolbox for All-Optical Closed-Loop Control of Neuronal Activities.
    Sheng W; Zhao X; Huang X; Yang Y
    Front Cell Neurosci; 2022; 16():917713. PubMed ID: 35865111
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hard real-time closed-loop electrophysiology with the Real-Time eXperiment Interface (RTXI).
    Patel YA; George A; Dorval AD; White JA; Christini DJ; Butera RJ
    PLoS Comput Biol; 2017 May; 13(5):e1005430. PubMed ID: 28557998
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optogenetics in Silicon: A Neural Processor for Predicting Optically Active Neural Networks.
    Junwen Luo ; Nikolic K; Evans BD; Na Dong ; Xiaohan Sun ; Andras P; Yakovlev A; Degenaar P
    IEEE Trans Biomed Circuits Syst; 2017 Feb; 11(1):15-27. PubMed ID: 28113518
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Towards real-time control of gene expression: controlling the HOG signaling cascade.
    Uhlendorf J; Bottani S; Fages F; Hersen P; Batt G
    Pac Symp Biocomput; 2011; ():338-49. PubMed ID: 21121061
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Falcon: a highly flexible open-source software for closed-loop neuroscience.
    Ciliberti D; Kloosterman F
    J Neural Eng; 2017 Aug; 14(4):045004. PubMed ID: 28548044
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Unlimited Potential of Microbial Rhodopsins as Optical Tools.
    Kojima K; Shibukawa A; Sudo Y
    Biochemistry; 2020 Jan; 59(3):218-229. PubMed ID: 31815443
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optogenetics and biosensors set the stage for metabolic cybergenetics.
    Carrasco-López C; García-Echauri SA; Kichuk T; Avalos JL
    Curr Opin Biotechnol; 2020 Oct; 65():296-309. PubMed ID: 32932048
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Wireless Headstage for Combined Optogenetics and Multichannel Electrophysiological Recording.
    Gagnon-Turcotte G; LeChasseur Y; Bories C; Messaddeq Y; De Koninck Y; Gosselin B
    IEEE Trans Biomed Circuits Syst; 2017 Feb; 11(1):1-14. PubMed ID: 27337721
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Miniaturized Escherichia coli Green Light Sensor with High Dynamic Range.
    Ong NT; Tabor JJ
    Chembiochem; 2018 Jun; 19(12):1255-1258. PubMed ID: 29420866
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Construction of a photo-responsive chimeric histidine kinase in Escherichia coli.
    Hori M; Oka S; Sugie Y; Ohtsuka H; Aiba H
    J Gen Appl Microbiol; 2017 Mar; 63(1):44-50. PubMed ID: 28154339
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gene-Embedded Nanostructural Biotic-Abiotic Optoelectrode Arrays Applied for Synchronous Brain Optogenetics and Neural Signal Recording.
    Huang WC; Chi HS; Lee YC; Lo YC; Liu TC; Chiang MY; Chen HY; Li SJ; Chen YY; Chen SY
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11270-11282. PubMed ID: 30844235
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optogenetic switches for light-controlled gene expression in yeast.
    Salinas F; Rojas V; Delgado V; Agosin E; Larrondo LF
    Appl Microbiol Biotechnol; 2017 Apr; 101(7):2629-2640. PubMed ID: 28210796
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optogenetic regulation of engineered cellular metabolism for microbial chemical production.
    Zhao EM; Zhang Y; Mehl J; Park H; Lalwani MA; Toettcher JE; Avalos JL
    Nature; 2018 Mar; 555(7698):683-687. PubMed ID: 29562237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.