These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 3354363)

  • 1. Effect of intracisternal thromboxane A2 analogue on cerebral artery permeability.
    Zuccarello M; Sasaki T; Kassell NF; Yamashita M
    Acta Neurochir (Wien); 1988; 90(3-4):144-51. PubMed ID: 3354363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endothelium-dependent and -independent responses to vasodilators of isolated dog cerebral arteries.
    Onoue H; Nakamura N; Toda N
    Stroke; 1988 Nov; 19(11):1388-94. PubMed ID: 2460977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions between vasoconstrictors in isolated human cerebral arteries.
    Hempelmann RG; Pradel RH; Barth HL; Mehdorn HM; Ziegler A
    Acta Neurochir (Wien); 1997; 139(6):574-81; discussion 581-2. PubMed ID: 9248594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of action of carbocyclic thromboxane A2 and its interaction with prostaglandin I2 and verapamil in isolated arteries.
    Toda N
    Circ Res; 1982 Dec; 51(6):675-82. PubMed ID: 6754126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Possible role of endothelial thromboxane A2 in the resting tone and contractile responses to acetylcholine and arachidonic acid in canine cerebral arteries.
    Shirahase H; Usui H; Kurahashi K; Fujiwara M; Fukui K
    J Cardiovasc Pharmacol; 1987 Nov; 10(5):517-22. PubMed ID: 2447399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of thromboxane and angiotensin in cyclosporine-induced renal vasoconstriction in the dog.
    Carrier M; Tronc F; Pelletier LC; Latour JG
    J Heart Lung Transplant; 1993; 12(5):851-5. PubMed ID: 8241227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vascular smooth muscle thromboxane A2 receptors mediate arachidonic acid-induced sudden death in rabbits.
    Pfister SL; Kotulock DA; Campbell WB
    Hypertension; 1997 Jan; 29(1 Pt 2):303-9. PubMed ID: 9039119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Barrier disruption in the major cerebral arteries following experimental subarachnoid hemorrhage.
    Sasaki T; Kassell NF; Yamashita M; Fujiwara S; Zuccarello M
    J Neurosurg; 1985 Sep; 63(3):433-40. PubMed ID: 4020472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure-induced myogenic responses in human isolated cerebral resistance arteries.
    Wallis SJ; Firth J; Dunn WR
    Stroke; 1996 Dec; 27(12):2287-90; discussion 2291. PubMed ID: 8969795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual regulation of cerebrovascular tone by UTP: P2U receptor-mediated contraction and endothelium-dependent relaxation.
    Miyagi Y; Kobayashi S; Nishimura J; Fukui M; Kanaide H
    Br J Pharmacol; 1996 Jun; 118(4):847-56. PubMed ID: 8799553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epithio-11,12-methano-thromboxane A2 stimulates inositol phosphates accumulation in isolated canine mesenteric artery strips.
    Ninomiya H; Fujiwara M
    Jpn J Pharmacol; 1991 Nov; 57(3):349-54. PubMed ID: 1839908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bay U 3405 inhibits cerebral vasospasm induced by authentic thromboxane A2.
    Braun M; Schrör K
    Stroke; 1990 Dec; 21(12 Suppl):IV152-4. PubMed ID: 2260141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory actions of ONO-3708 on the stretch-induced contraction potentiated by hemolysate/oxyhemoglobin studied in dog cerebral artery.
    Tanaka Y; Nakayama K; Shigenobu K
    Res Commun Mol Pathol Pharmacol; 1997 Dec; 98(3):303-11. PubMed ID: 9485524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the thromboxane A2 receptor in the vasoactive response to ischemia-reperfusion injury.
    Mazolewski PJ; Roth AC; Suchy H; Stephenson LL; Zamboni WA
    Plast Reconstr Surg; 1999 Oct; 104(5):1393-6. PubMed ID: 10513923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of venoconstriction in thromboxane-induced pulmonary hypertension and edema in lambs.
    Yoshimura K; Tod ML; Pier KG; Rubin LJ
    J Appl Physiol (1985); 1989 Feb; 66(2):929-35. PubMed ID: 2651387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelin-1 and thromboxane A2 increase pulmonary vascular resistance in granulocyte-mediated lung injury.
    Schmeck J; Janzen R; Münter K; Neuhof H; Koch T; Janzen R
    Crit Care Med; 1998 Nov; 26(11):1868-74. PubMed ID: 9824081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin of thromboxane-mediated constriction due to neuropeptides in canine basilar artery.
    Tsuji T; Cook DA
    Eur J Pharmacol; 1994 Oct; 264(1):77-80. PubMed ID: 7828646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disturbance in the intramural circulation of the major cerebro-pial arteries after experimental subarachnoid haemorrhage.
    Uemura Y; Okamoto S; Handa Y; Handa H
    Acta Neurochir (Wien); 1987; 89(1-2):71-6. PubMed ID: 3434344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence that the substance P-induced enhancement of pacemaking in lymphatics of the guinea-pig mesentery occurs through endothelial release of thromboxane A2.
    Rayner SE; Van Helden DF
    Br J Pharmacol; 1997 Aug; 121(8):1589-96. PubMed ID: 9283691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism underlying relaxations caused by prostaglandins and thromboxane A2 analog in isolated dog arteries.
    Toda N; Inoue S; Okamura T; Okunishi H
    J Cardiovasc Pharmacol; 1988 Mar; 11(3):354-62. PubMed ID: 2452930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.