These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33543736)

  • 1. The mechanism of hydrogen-accelerated melting of polycrystalline copper.
    Huang H; Ai L; Chen M; Lü Y
    Phys Chem Chem Phys; 2021 Feb; 23(6):3942-3948. PubMed ID: 33543736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modes of surface premelting in colloidal crystals composed of attractive particles.
    Li B; Wang F; Zhou D; Peng Y; Ni R; Han Y
    Nature; 2016 Mar; 531(7595):485-8. PubMed ID: 26976448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometry of Triple Junctions during Grain Boundary Premelting.
    Torabi Rad M; Boussinot G; Apel M
    Phys Rev Lett; 2021 Nov; 127(22):225701. PubMed ID: 34889636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of grain boundary premelting.
    Torabi Rad M; Boussinot G; Apel M
    Sci Rep; 2020 Dec; 10(1):21074. PubMed ID: 33273544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local and bulk melting of shocked columnar nanocrystalline Cu: Dynamics, anisotropy, premelting, superheating, supercooling, and re-crystallization.
    He AM; Duan SQ; Shao JL; Wang P; Luo SN
    J Chem Phys; 2013 Aug; 139(7):074502. PubMed ID: 23968097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ReaxFF reactive force field for the Y-doped BaZrO3 proton conductor with applications to diffusion rates for multigranular systems.
    van Duin AC; Merinov BV; Han SS; Dorso CO; Goddard WA
    J Phys Chem A; 2008 Nov; 112(45):11414-22. PubMed ID: 18925731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theory of ice premelting in porous media.
    Hansen-Goos H; Wettlaufer JS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031604. PubMed ID: 20365744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How atoms of polycrystalline Nb
    Ju SP; Li CC; Shih HT
    Sci Rep; 2022 Mar; 12(1):5183. PubMed ID: 35338217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constrained minimal-interface structures in polycrystalline copper with extremely fine grains.
    Li XY; Jin ZH; Zhou X; Lu K
    Science; 2020 Nov; 370(6518):831-836. PubMed ID: 33184210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-field modeling of grain-boundary premelting using obstacle potentials.
    Bhogireddy VS; Hüter C; Neugebauer J; Steinbach I; Karma A; Spatschek R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012401. PubMed ID: 25122309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic-scale observation of premelting at 2D lattice defects inside oxide crystals.
    Kim HS; An JS; Bae HB; Chung SY
    Nat Commun; 2023 Apr; 14(1):2255. PubMed ID: 37081020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. H/D exchange kinetics in pure and HCl doped polycrystalline ice at temperatures near its melting point: structure, chemical transport, and phase transitions at grain boundaries.
    Lu H; McCartney SA; Sadtchenko V
    J Chem Phys; 2009 Feb; 130(5):054501. PubMed ID: 19206978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion of Alkali Metals in Polycrystalline CuInSe
    Chugh M; Kühne TD; Mirhosseini H
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):14821-14829. PubMed ID: 30924332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural disjoining potential for grain-boundary premelting and grain coalescence from molecular-dynamics simulations.
    Fensin SJ; Olmsted D; Buta D; Asta M; Karma A; Hoyt JJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 1):031601. PubMed ID: 20365741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging the Hydrogen Absorption Dynamics of Individual Grains in Polycrystalline Palladium Thin Films in 3D.
    Yau A; Harder RJ; Kanan MW; Ulvestad A
    ACS Nano; 2017 Nov; 11(11):10945-10954. PubMed ID: 29035558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast thermal desorption spectroscopy study of H/D isotopic exchange reaction in polycrystalline ice near its melting point.
    Lu H; McCartney SA; Sadtchenko V
    J Chem Phys; 2007 Nov; 127(18):184701. PubMed ID: 18020652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ReaxFF reactive force field for molecular dynamics simulations of liquid Cu and Zr metals.
    Huang HS; Ai LQ; van Duin ACT; Chen M; Lü YJ
    J Chem Phys; 2019 Sep; 151(9):094503. PubMed ID: 31492056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Premelting at defects within bulk colloidal crystals.
    Alsayed AM; Islam MF; Zhang J; Collings PJ; Yodh AG
    Science; 2005 Aug; 309(5738):1207-10. PubMed ID: 15994377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melting of multilayer colloidal crystals confined between two walls.
    Peng Y; Wang ZR; Alsayed AM; Yodh AG; Han Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011404. PubMed ID: 21405695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomistic Assessment of Melting Point Depression and Enhanced Interfacial Diffusion of Cu in Confinement with AlN.
    Müller YL; Jeurgens LPH; Antušek A; Turlo V
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):26099-26115. PubMed ID: 35622453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.