These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33543748)

  • 1. Multi-layered network-based pathway activity inference using directed random walks: application to predicting clinical outcomes in urologic cancer.
    Kim SY; Choe EK; Shivakumar M; Kim D; Sohn KA
    Bioinformatics; 2021 Aug; 37(16):2405-2413. PubMed ID: 33543748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust pathway-based multi-omics data integration using directed random walks for survival prediction in multiple cancer studies.
    Kim SY; Jeong HH; Kim J; Moon JH; Sohn KA
    Biol Direct; 2019 Apr; 14(1):8. PubMed ID: 31036036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topological integration of RPPA proteomic data with multi-omics data for survival prediction in breast cancer via pathway activity inference.
    Kim TR; Jeong HH; Sohn KA
    BMC Med Genomics; 2019 Jul; 12(Suppl 5):94. PubMed ID: 31296204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological Random Walks: multi-omics integration for disease gene prioritization.
    Gentili M; Martini L; Sponziello M; Becchetti L
    Bioinformatics; 2022 Sep; 38(17):4145-4152. PubMed ID: 35792834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-omics data integration by generative adversarial network.
    Ahmed KT; Sun J; Cheng S; Yong J; Zhang W
    Bioinformatics; 2021 Dec; 38(1):179-186. PubMed ID: 34415323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iDINGO-integrative differential network analysis in genomics with Shiny application.
    Class CA; Ha MJ; Baladandayuthapani V; Do KA
    Bioinformatics; 2018 Apr; 34(7):1243-1245. PubMed ID: 29194470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leveraging heterogeneous network embedding for metabolic pathway prediction.
    M A Basher AR; Hallam SJ
    Bioinformatics; 2021 May; 37(6):822-829. PubMed ID: 33305310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrative pathway-based survival prediction utilizing the interaction between gene expression and DNA methylation in breast cancer.
    Kim SY; Kim TR; Jeong HH; Sohn KA
    BMC Med Genomics; 2018 Sep; 11(Suppl 3):68. PubMed ID: 30255812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MVGCN: data integration through multi-view graph convolutional network for predicting links in biomedical bipartite networks.
    Fu H; Huang F; Liu X; Qiu Y; Zhang W
    Bioinformatics; 2022 Jan; 38(2):426-434. PubMed ID: 34499148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Network-based integration of multi-omics data for prioritizing cancer genes.
    Dimitrakopoulos C; Hindupur SK; Häfliger L; Behr J; Montazeri H; Hall MN; Beerenwinkel N
    Bioinformatics; 2018 Jul; 34(14):2441-2448. PubMed ID: 29547932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene-set integrative analysis of multi-omics data using tensor-based association test.
    Chang SM; Yang M; Lu W; Huang YJ; Huang Y; Hung H; Miecznikowski JC; Lu TP; Tzeng JY
    Bioinformatics; 2021 Aug; 37(16):2259-2265. PubMed ID: 33674827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework.
    Yang H; Wei Q; Zhong X; Yang H; Li B
    Bioinformatics; 2017 Feb; 33(4):483-490. PubMed ID: 27797769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MODIG: integrating multi-omics and multi-dimensional gene network for cancer driver gene identification based on graph attention network model.
    Zhao W; Gu X; Chen S; Wu J; Zhou Z
    Bioinformatics; 2022 Oct; 38(21):4901-4907. PubMed ID: 36094338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SGI: automatic clinical subgroup identification in omics datasets.
    Buyukozkan M; Suhre K; Krumsiek J
    Bioinformatics; 2022 Jan; 38(2):573-576. PubMed ID: 34529048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. netGO: R-Shiny package for network-integrated pathway enrichment analysis.
    Kim J; Yoon S; Nam D
    Bioinformatics; 2020 May; 36(10):3283-3285. PubMed ID: 32083639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inferring subgroup-specific driver genes from heterogeneous cancer samples via subspace learning with subgroup indication.
    Xi J; Yuan X; Wang M; Li A; Li X; Huang Q
    Bioinformatics; 2020 Mar; 36(6):1855-1863. PubMed ID: 31626284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. scAWMV: an adaptively weighted multi-view learning framework for the integrative analysis of parallel scRNA-seq and scATAC-seq data.
    Zeng P; Ma Y; Lin Z
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36383176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene relevance based on multiple evidences in complex networks.
    Di Nanni N; Gnocchi M; Moscatelli M; Milanesi L; Mosca E
    Bioinformatics; 2020 Feb; 36(3):865-871. PubMed ID: 31504182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. scMEGA: single-cell multi-omic enhancer-based gene regulatory network inference.
    Li Z; Nagai JS; Kuppe C; Kramann R; Costa IG
    Bioinform Adv; 2023; 3(1):vbad003. PubMed ID: 36698768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM.
    Vaske CJ; Benz SC; Sanborn JZ; Earl D; Szeto C; Zhu J; Haussler D; Stuart JM
    Bioinformatics; 2010 Jun; 26(12):i237-45. PubMed ID: 20529912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.