These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 33543965)

  • 1. Minimum Dissipation Theorem for Microswimmers.
    Nasouri B; Vilfan A; Golestanian R
    Phys Rev Lett; 2021 Jan; 126(3):034503. PubMed ID: 33543965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal shapes of surface slip driven self-propelled microswimmers.
    Vilfan A
    Phys Rev Lett; 2012 Sep; 109(12):128105. PubMed ID: 23005993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow properties and hydrodynamic interactions of rigid spherical microswimmers.
    Adhyapak TC; Jabbari-Farouji S
    Phys Rev E; 2017 Nov; 96(5-1):052608. PubMed ID: 29347781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Load response of shape-changing microswimmers scales with their swimming efficiency.
    Friedrich BM
    Phys Rev E; 2018 Apr; 97(4-1):042416. PubMed ID: 29758744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilizing passive elements to break time reversibility at low Reynolds number: a swimmer with one activated element.
    Sheikhshoaei A; Rajabi M
    Eur Phys J E Soft Matter; 2023 Mar; 46(3):15. PubMed ID: 36929245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconfigurable paramagnetic microswimmers: Brownian motion affects non-reciprocal actuation.
    Du D; Hilou E; Biswal SL
    Soft Matter; 2018 May; 14(18):3463-3470. PubMed ID: 29542796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collision of microswimmers in a viscous fluid.
    Potomkin M; Gyrya V; Aranson I; Berlyand L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053005. PubMed ID: 23767618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ewald sum for hydrodynamic interactions of rigid spherical microswimmers.
    Adhyapak TC; Jabbari-Farouji S
    J Chem Phys; 2018 Oct; 149(14):144110. PubMed ID: 30316279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the cross-streamline lift of microswimmers in viscoelastic flows.
    Choudhary A; Stark H
    Soft Matter; 2021 Dec; 18(1):48-52. PubMed ID: 34878484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of interfilament hydrodynamic interaction on swimming performance of two-filament microswimmers.
    Singh TS; Singh P; Yadava RDS
    Soft Matter; 2018 Sep; 14(37):7748-7758. PubMed ID: 30206610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetically Driven Undulatory Microswimmers Integrating Multiple Rigid Segments.
    Liao P; Xing L; Zhang S; Sun D
    Small; 2019 Sep; 15(36):e1901197. PubMed ID: 31314164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propulsion Mechanism of Flexible Microbead Swimmers in the Low Reynolds Number Regime.
    Li YH; Chen SC
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33333847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collinear swimmer propelling a cargo sphere at low Reynolds number.
    Felderhof BU
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):053013. PubMed ID: 25493887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the limitations of some popular numerical models of flagellated microswimmers: importance of long-range forces and flagellum waveform.
    Rorai C; Zaitsev M; Karabasov S
    R Soc Open Sci; 2019 Jan; 6(1):180745. PubMed ID: 30800342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lattice Boltzmann simulations of the bead-spring microswimmer with a responsive stroke-from an individual to swarms.
    Pickl K; Pande J; Köstler H; Rüde U; Smith AS
    J Phys Condens Matter; 2017 Mar; 29(12):124001. PubMed ID: 28098559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locomotion by tangential deformation in a polymeric fluid.
    Zhu L; Do-Quang M; Lauga E; Brandt L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 1):011901. PubMed ID: 21405707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selectively manipulable acoustic-powered microswimmers.
    Ahmed D; Lu M; Nourhani A; Lammert PE; Stratton Z; Muddana HS; Crespi VH; Huang TJ
    Sci Rep; 2015 May; 5():9744. PubMed ID: 25993314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Casimir effect in swimmer suspensions.
    Parra-Rojas C; Soto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013024. PubMed ID: 25122386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can the self-propulsion of anisotropic microswimmers be described by using forces and torques?
    ten Hagen B; Wittkowski R; Takagi D; Kümmel F; Bechinger C; Löwen H
    J Phys Condens Matter; 2015 May; 27(19):194110. PubMed ID: 25923010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Base flow decomposition for complex moving objects in linear hydrodynamics: Application to helix-shaped flagellated microswimmers.
    Zhang J; Chinappi M; Biferale L
    Phys Rev E; 2021 Feb; 103(2-1):023109. PubMed ID: 33736027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.