These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 33543972)

  • 1. Single-Phonon Addition and Subtraction to a Mechanical Thermal State.
    Enzian G; Price JJ; Freisem L; Nunn J; Janousek J; Buchler BC; Lam PK; Vanner MR
    Phys Rev Lett; 2021 Jan; 126(3):033601. PubMed ID: 33543972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-Gaussian Mechanical Motion via Single and Multiphonon Subtraction from a Thermal State.
    Enzian G; Freisem L; Price JJ; Svela AØ; Clarke J; Shajilal B; Janousek J; Buchler BC; Lam PK; Vanner MR
    Phys Rev Lett; 2021 Dec; 127(24):243601. PubMed ID: 34951800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene-Enhanced Brillouin Optomechanical Microresonator for Ultrasensitive Gas Detection.
    Yao B; Yu C; Wu Y; Huang SW; Wu H; Gong Y; Chen Y; Li Y; Wong CW; Fan X; Rao Y
    Nano Lett; 2017 Aug; 17(8):4996-5002. PubMed ID: 28708404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Room-Temperature Mechanical Resonator with a Single Added or Subtracted Phonon.
    Patel RN; McKenna TP; Wang Z; Witmer JD; Jiang W; Van Laer R; Sarabalis CJ; Safavi-Naeini AH
    Phys Rev Lett; 2021 Sep; 127(13):133602. PubMed ID: 34623823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brillouin cavity optomechanics with microfluidic devices.
    Bahl G; Kim KH; Lee W; Liu J; Fan X; Carmon T
    Nat Commun; 2013; 4():1994. PubMed ID: 23744103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heralded single-phonon preparation, storage, and readout in cavity optomechanics.
    Galland C; Sangouard N; Piro N; Gisin N; Kippenberg TJ
    Phys Rev Lett; 2014 Apr; 112(14):143602. PubMed ID: 24765960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time electrical tuning of an optical spring on a monolithically integrated ultrahigh Q lithium nibote microresonator.
    Fang Z; Haque S; Lin J; Wu R; Zhang J; Wang M; Zhou J; Rafa M; Lu T; Cheng Y
    Opt Lett; 2019 Mar; 44(5):1214-1217. PubMed ID: 30821751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-path photon-phonon converter in optomechanical system at single-quantum level.
    Chen TY; Zhang WZ; Fang RZ; Hang CZ; Zhou L
    Opt Express; 2017 May; 25(10):10779-10790. PubMed ID: 28788767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical multistability and Fano line-shape control via mode coupling in whispering-gallery-mode microresonator optomechanics.
    Zhang S; Li J; Yu R; Wang W; Wu Y
    Sci Rep; 2017 Jan; 7():39781. PubMed ID: 28045120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proposal for a quantum traveling Brillouin resonator.
    Harris GI; Sawadsky A; Sfendla YL; Wasserman WW; Bowen WP; Baker CG
    Opt Express; 2020 Jul; 28(15):22450-22461. PubMed ID: 32752505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phonon counting and intensity interferometry of a nanomechanical resonator.
    Cohen JD; Meenehan SM; MacCabe GS; Gröblacher S; Safavi-Naeini AH; Marsili F; Shaw MD; Painter O
    Nature; 2015 Apr; 520(7548):522-5. PubMed ID: 25903632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced quantum nonlinearities in a two-mode optomechanical system.
    Ludwig M; Safavi-Naeini AH; Painter O; Marquardt F
    Phys Rev Lett; 2012 Aug; 109(6):063601. PubMed ID: 23006265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ground-state cooling of an oscillator in a hybrid atom-optomechanical system.
    Yi Z; Li GX; Wu SP; Yang YP
    Opt Express; 2014 Aug; 22(17):20060-75. PubMed ID: 25321216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum nondemolition measurement of mechanical motion quanta.
    Dellantonio L; Kyriienko O; Marquardt F; Sørensen AS
    Nat Commun; 2018 Sep; 9(1):3621. PubMed ID: 30190532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonreciprocal Frequency Conversion and Mode Routing in a Microresonator.
    Shen Z; Zhang YL; Chen Y; Xiao YF; Zou CL; Guo GC; Dong CH
    Phys Rev Lett; 2023 Jan; 130(1):013601. PubMed ID: 36669210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissipatively Controlled Optomechanical Interaction via Cascaded Photon-Phonon Coupling.
    Shen Z; Zhang YL; Zou CL; Guo GC; Dong CH
    Phys Rev Lett; 2021 Apr; 126(16):163604. PubMed ID: 33961448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum simulation of tunable and ultrastrong mixed-optomechanics.
    Zhou YH; Yin XL; Liao JQ
    Opt Express; 2021 Aug; 29(18):28202-28216. PubMed ID: 34614957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. All-optical optomechanics: an optical spring mirror.
    Singh S; Phelps GA; Goldbaum DS; Wright EM; Meystre P
    Phys Rev Lett; 2010 Nov; 105(21):213602. PubMed ID: 21231305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators.
    Rosenblum S; Lovsky Y; Arazi L; Vollmer F; Dayan B
    Nat Commun; 2015 Apr; 6():6788. PubMed ID: 25873232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cascaded optical transparency in multimode-cavity optomechanical systems.
    Fan L; Fong KY; Poot M; Tang HX
    Nat Commun; 2015 Jan; 6():5850. PubMed ID: 25586909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.