These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33543975)

  • 1. Phase Separation and Multibody Effects in Three-Dimensional Active Brownian Particles.
    Turci F; Wilding NB
    Phys Rev Lett; 2021 Jan; 126(3):038002. PubMed ID: 33543975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase Diagram of Active Brownian Spheres: Crystallization and the Metastability of Motility-Induced Phase Separation.
    Omar AK; Klymko K; GrandPre T; Geissler PL
    Phys Rev Lett; 2021 May; 126(18):188002. PubMed ID: 34018789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motility-Induced Microphase and Macrophase Separation in a Two-Dimensional Active Brownian Particle System.
    Caporusso CB; Digregorio P; Levis D; Cugliandolo LF; Gonnella G
    Phys Rev Lett; 2020 Oct; 125(17):178004. PubMed ID: 33156654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical behavior of active Brownian particles: Connection to field theories.
    Speck T
    Phys Rev E; 2022 Jun; 105(6-1):064601. PubMed ID: 35854575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase separation in binary mixtures of active and passive particles.
    Dolai P; Simha A; Mishra S
    Soft Matter; 2018 Jul; 14(29):6137-6145. PubMed ID: 29999083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pattern formation and self-assembly driven by competing interactions.
    Pini D; Parola A
    Soft Matter; 2017 Dec; 13(48):9259-9272. PubMed ID: 29199736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Negative Interfacial Tension in Phase-Separated Active Brownian Particles.
    Bialké J; Siebert JT; Löwen H; Speck T
    Phys Rev Lett; 2015 Aug; 115(9):098301. PubMed ID: 26371685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of three-body interactions on the phase behavior of charge-stabilized colloidal suspensions.
    Hynninen AP; Dijkstra M; van Roij R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061407. PubMed ID: 15244568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleation pathway and kinetics of phase-separating active Brownian particles.
    Richard D; Löwen H; Speck T
    Soft Matter; 2016 Jun; 12(24):5257-64. PubMed ID: 27126952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase separation and state oscillation of active inertial particles.
    Dai C; Bruss IR; Glotzer SC
    Soft Matter; 2020 Mar; 16(11):2847-2853. PubMed ID: 32104833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active Brownian particles: mapping to equilibrium polymers and exact computation of moments.
    Shee A; Dhar A; Chaudhuri D
    Soft Matter; 2020 May; 16(20):4776-4787. PubMed ID: 32409794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multibody Interactions, Phase Behavior, and Clustering in Nanoparticle-Polyelectrolyte Mixtures.
    Pandav G; Pryamitsyn V; Errington J; Ganesan V
    J Phys Chem B; 2015 Nov; 119(45):14536-50. PubMed ID: 26473468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sticky-probe active microrheology: Part 2. The influence of attractions on non-Newtonian flow.
    Huang DE; Zia RN
    J Colloid Interface Sci; 2020 Mar; 562():293-306. PubMed ID: 31841889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of MIPS in a suspension of repulsive active Brownian particles through dynamical features.
    Martin-Roca J; Martinez R; Alexander LC; Diez AL; Aarts DGAL; Alarcon F; Ramírez J; Valeriani C
    J Chem Phys; 2021 Apr; 154(16):164901. PubMed ID: 33940816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-diffusion in submonolayer colloidal fluids near a wall.
    Anekal SG; Bevan MA
    J Chem Phys; 2006 Jul; 125(3):34906. PubMed ID: 16863384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamical clustering interrupts motility-induced phase separation in chiral active Brownian particles.
    Ma Z; Ni R
    J Chem Phys; 2022 Jan; 156(2):021102. PubMed ID: 35032980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clustering and phase separation in mixtures of dipolar and active particles.
    Maloney RC; Liao GJ; Klapp SHL; Hall CK
    Soft Matter; 2020 Apr; 16(15):3779-3791. PubMed ID: 32239046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical casimir forces and colloidal phase transitions in a near-critical solvent: a simple model reveals a rich phase diagram.
    Edison JR; Tasios N; Belli S; Evans R; van Roij R; Dijkstra M
    Phys Rev Lett; 2015 Jan; 114(3):038301. PubMed ID: 25659025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuum theory of phase separation kinetics for active Brownian particles.
    Stenhammar J; Tiribocchi A; Allen RJ; Marenduzzo D; Cates ME
    Phys Rev Lett; 2013 Oct; 111(14):145702. PubMed ID: 24138255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frictional active Brownian particles.
    Nie P; Chattoraj J; Piscitelli A; Doyle P; Ni R; Ciamarra MP
    Phys Rev E; 2020 Sep; 102(3-1):032612. PubMed ID: 33076034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.