These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 33544610)

  • 21. Salvinia-Effect-Inspired "Sticky" Superhydrophobic Surfaces by Meniscus-Confined Electrodeposition.
    Zheng D; Jiang Y; Yu W; Jiang X; Zhao X; Choi CH; Sun G
    Langmuir; 2017 Nov; 33(47):13640-13648. PubMed ID: 29096056
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The rose petal effect and the modes of superhydrophobicity.
    Bhushan B; Nosonovsky M
    Philos Trans A Math Phys Eng Sci; 2010 Oct; 368(1929):4713-28. PubMed ID: 20855317
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adhesion behaviors of water droplets on bioinspired superhydrophobic surfaces.
    Xu P; Zhang Y; Li L; Lin Z; Zhu B; Chen W; Li G; Liu H; Xiao K; Xiong Y; Yang S; Lei Y; Xue L
    Bioinspir Biomim; 2022 Jun; 17(4):. PubMed ID: 35561670
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A theoretical approach to the relationship between wettability and surface microstructures of epidermal cells and structured cuticles of flower petals.
    Taneda H; Watanabe-Taneda A; Chhetry R; Ikeda H
    Ann Bot; 2015 May; 115(6):923-37. PubMed ID: 25851137
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamics of droplet impingement on bioinspired surface: insights into spreading, anomalous stickiness and break-up.
    Roy D; Pandey K; Banik M; Mukherjee R; Basu S
    Proc Math Phys Eng Sci; 2019 Sep; 475(2229):20190260. PubMed ID: 31611721
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal.
    Bhushan B; Her EK
    Langmuir; 2010 Jun; 26(11):8207-17. PubMed ID: 20131881
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Creation of "Rose Petal" and "Lotus Leaf" Effects on Alumina by Surface Functionalization and Metal-Ion Coordination.
    Mukhopadhyay RD; Vedhanarayanan B; Ajayaghosh A
    Angew Chem Int Ed Engl; 2017 Dec; 56(50):16018-16022. PubMed ID: 29053212
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnetorheological Elastomer Films with Tunable Wetting and Adhesion Properties.
    Lee S; Yim C; Kim W; Jeon S
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19853-6. PubMed ID: 26301942
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of a Cationic Surfactant on Droplet Wetting on Superhydrophobic Surfaces.
    Aldhaleai A; Tsai PA
    Langmuir; 2020 Apr; 36(16):4308-4316. PubMed ID: 32298121
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent developments in bio-inspired special wettability.
    Liu K; Yao X; Jiang L
    Chem Soc Rev; 2010 Aug; 39(8):3240-55. PubMed ID: 20589267
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of a Flexible Superhydrophobic Surface and Its Wetting Mechanism Based on Fractal Theory.
    Jiang G; Hu J; Chen L
    Langmuir; 2020 Jul; 36(29):8435-8443. PubMed ID: 32640799
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to-Cassie transition.
    Liu G; Fu L; Rode AV; Craig VS
    Langmuir; 2011 Mar; 27(6):2595-600. PubMed ID: 21322574
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional Superhydrophobic Surfaces with Spatially Programmable Adhesion.
    Guo DY; Li CH; Chang LM; Jau HC; Lo WC; Lin WC; Wang CT; Lin TH
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33322682
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mimicking both petal and lotus effects on a single silicon substrate by tuning the wettability of nanostructured surfaces.
    Dawood MK; Zheng H; Liew TH; Leong KC; Foo YL; Rajagopalan R; Khan SA; Choi WK
    Langmuir; 2011 Apr; 27(7):4126-33. PubMed ID: 21355585
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wetting characteristics of Colocasia esculenta (Taro) leaf and a bioinspired surface thereof.
    Kumar M; Bhardwaj R
    Sci Rep; 2020 Jan; 10(1):935. PubMed ID: 31969578
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stimuli-responsive surfaces for switchable wettability and adhesion.
    Li C; Li M; Ni Z; Guan Q; Blackman BRK; Saiz E
    J R Soc Interface; 2021 Jun; 18(179):20210162. PubMed ID: 34129792
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces.
    Teisala H; Tuominen M; Aromaa M; Stepien M; Mäkelä JM; Saarinen JJ; Toivakka M; Kuusipalo J
    Langmuir; 2012 Feb; 28(6):3138-45. PubMed ID: 22263866
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical Explanation of the Lotus Effect: Superhydrophobic Property Changes by Removal of Nanostructures from the Surface of a Lotus Leaf.
    Yamamoto M; Nishikawa N; Mayama H; Nonomura Y; Yokojima S; Nakamura S; Uchida K
    Langmuir; 2015 Jul; 31(26):7355-63. PubMed ID: 26075949
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Slippery Wenzel State.
    Dai X; Stogin BB; Yang S; Wong TS
    ACS Nano; 2015 Sep; 9(9):9260-7. PubMed ID: 26302154
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Petal effect: a superhydrophobic state with high adhesive force.
    Feng L; Zhang Y; Xi J; Zhu Y; Wang N; Xia F; Jiang L
    Langmuir; 2008 Apr; 24(8):4114-9. PubMed ID: 18312016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.