These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 33544686)
1. 7-Instant Discrete-Time Synthesis Model Solving Future Different-Level Linear Matrix System via Equivalency of Zeroing Neural Network. Yang M; Zhang Y; Tan N; Mao M; Hu H IEEE Trans Cybern; 2022 Aug; 52(8):8366-8375. PubMed ID: 33544686 [TBL] [Abstract][Full Text] [Related]
2. General 7-Instant DCZNN Model Solving Future Different-Level System of Nonlinear Inequality and Linear Equation. Yang M; Zhang Y; Hu H; Qiu B IEEE Trans Neural Netw Learn Syst; 2020 Sep; 31(9):3204-3214. PubMed ID: 31567101 [TBL] [Abstract][Full Text] [Related]
3. Inverse-Free Discrete ZNN Models Solving for Future Matrix Pseudoinverse via Combination of Extrapolation and ZeaD Formulas. Zhang Y; Ling Y; Yang M; Yang S; Zhang Z IEEE Trans Neural Netw Learn Syst; 2021 Jun; 32(6):2663-2675. PubMed ID: 32745006 [TBL] [Abstract][Full Text] [Related]
4. Discrete-Time Advanced Zeroing Neurodynamic Algorithm Applied to Future Equality-Constrained Nonlinear Optimization With Various Noises. Qiu B; Guo J; Li X; Zhang Z; Zhang Y IEEE Trans Cybern; 2022 May; 52(5):3539-3552. PubMed ID: 32759087 [TBL] [Abstract][Full Text] [Related]
5. Unified Model Solving Nine Types of Time-Varying Problems in the Frame of Zeroing Neural Network. Li J; Shi Y; Xuan H IEEE Trans Neural Netw Learn Syst; 2021 May; 32(5):1896-1905. PubMed ID: 32484780 [TBL] [Abstract][Full Text] [Related]
6. Zeroing Neural Network for Solving Time-Varying Linear Equation and Inequality Systems. Xu F; Li Z; Nie Z; Shao H; Guo D IEEE Trans Neural Netw Learn Syst; 2019 Aug; 30(8):2346-2357. PubMed ID: 30582557 [TBL] [Abstract][Full Text] [Related]
7. Zeroing Neural Network With Coefficient Functions and Adjustable Parameters for Solving Time-Variant Sylvester Equation. Wu W; Zhang Y IEEE Trans Neural Netw Learn Syst; 2024 May; 35(5):6757-6766. PubMed ID: 36256719 [TBL] [Abstract][Full Text] [Related]
8. General Square-Pattern Discretization Formulas via Second-Order Derivative Elimination for Zeroing Neural Network Illustrated by Future Optimization. Li J; Zhang Y; Mao M IEEE Trans Neural Netw Learn Syst; 2019 Mar; 30(3):891-901. PubMed ID: 30072348 [TBL] [Abstract][Full Text] [Related]
9. Inverse-Free DZNN Models for Solving Time-Dependent Linear System via High-Precision Linear Six-Step Method. Yang M; Zhang Y; Hu H IEEE Trans Neural Netw Learn Syst; 2024 Jun; 35(6):8597-8608. PubMed ID: 37015638 [TBL] [Abstract][Full Text] [Related]
10. New Discrete-Time ZNN Models for Least-Squares Solution of Dynamic Linear Equation System With Time-Varying Rank-Deficient Coefficient. Qiu B; Zhang Y; Yang Z IEEE Trans Neural Netw Learn Syst; 2018 Nov; 29(11):5767-5776. PubMed ID: 29993872 [TBL] [Abstract][Full Text] [Related]
11. Explicit Linear Left-and-Right 5-Step Formulas With Zeroing Neural Network for Time-Varying Applications. Yang M; Zhang Y; Tan N; Hu H IEEE Trans Cybern; 2023 Feb; 53(2):1133-1143. PubMed ID: 34464284 [TBL] [Abstract][Full Text] [Related]
12. Zhang neural network for online solution of time-varying linear matrix inequality aided with an equality conversion. Guo D; Zhang Y IEEE Trans Neural Netw Learn Syst; 2014 Feb; 25(2):370-82. PubMed ID: 24807035 [TBL] [Abstract][Full Text] [Related]
13. Novel Discrete-Time Recurrent Neural Networks Handling Discrete-Form Time-Variant Multi-Augmented Sylvester Matrix Problems and Manipulator Application. Shi Y; Jin L; Li S; Li J; Qiang J; Gerontitis DK IEEE Trans Neural Netw Learn Syst; 2022 Feb; 33(2):587-599. PubMed ID: 33074831 [TBL] [Abstract][Full Text] [Related]
14. Link Between and Comparison and Combination of Zhang Neural Network and Quasi-Newton BFGS Method for Time-Varying Quadratic Minimization. Zhang Y; Mu B; Zheng H IEEE Trans Cybern; 2013 Apr; 43(2):490-503. PubMed ID: 22929435 [TBL] [Abstract][Full Text] [Related]
15. A new noise-tolerant and predefined-time ZNN model for time-dependent matrix inversion. Xiao L; Zhang Y; Dai J; Chen K; Yang S; Li W; Liao B; Ding L; Li J Neural Netw; 2019 Sep; 117():124-134. PubMed ID: 31158644 [TBL] [Abstract][Full Text] [Related]
16. Zhang neural network versus gradient neural network for solving time-varying linear inequalities. Xiao L; Zhang Y IEEE Trans Neural Netw; 2011 Oct; 22(10):1676-84. PubMed ID: 21846604 [TBL] [Abstract][Full Text] [Related]
17. A Finite-Time Convergent and Noise-Rejection Recurrent Neural Network and Its Discretization for Dynamic Nonlinear Equations Solving. Li W; Xiao L; Liao B IEEE Trans Cybern; 2020 Jul; 50(7):3195-3207. PubMed ID: 31021811 [TBL] [Abstract][Full Text] [Related]
18. Predefined-Time Zeroing Neural Networks With Independent Prior Parameter for Solving Time-Varying Plural Lyapunov Tensor Equation. Qi Z; Ning Y; Xiao L; He Y; Luo J; Luo B IEEE Trans Neural Netw Learn Syst; 2024 Jul; 35(7):9408-9416. PubMed ID: 37018606 [TBL] [Abstract][Full Text] [Related]
19. Computing Time-Varying Quadratic Optimization With Finite-Time Convergence and Noise Tolerance: A Unified Framework for Zeroing Neural Network. Xiao L; Li K; Duan M IEEE Trans Neural Netw Learn Syst; 2019 Nov; 30(11):3360-3369. PubMed ID: 30716052 [TBL] [Abstract][Full Text] [Related]
20. Taylor O(h³) Discretization of ZNN Models for Dynamic Equality-Constrained Quadratic Programming With Application to Manipulators. Liao B; Zhang Y; Jin L IEEE Trans Neural Netw Learn Syst; 2016 Feb; 27(2):225-37. PubMed ID: 26058059 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]