These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 33544764)
1. Addition of angled rungs to the horizontal ladder walking task for more sensitive probing of sensorimotor changes. Eisdorfer JT; Phelan MA; Keefe KM; Rollins MM; Campion TJ; Rauscher KM; Sobotka-Briner H; Senior M; Gordon G; Smith GM; Spence AJ PLoS One; 2021; 16(2):e0246298. PubMed ID: 33544764 [TBL] [Abstract][Full Text] [Related]
2. Ladder Treadmill: A Method to Assess Locomotion in Cats with an Intact or Lesioned Spinal Cord. Escalona M; Delivet-Mongrain H; Kundu A; Gossard JP; Rossignol S J Neurosci; 2017 May; 37(22):5429-5446. PubMed ID: 28473641 [TBL] [Abstract][Full Text] [Related]
3. The ladder rung walking task: a scoring system and its practical application. Metz GA; Whishaw IQ J Vis Exp; 2009 Jun; (28):. PubMed ID: 19525918 [TBL] [Abstract][Full Text] [Related]
4. Correction: Addition of angled rungs to the horizontal ladder walking task for more sensitive probing of sensorimotor changes. Eisdorfer JT; Phelan MA; Keefe KM; Rollins MM; Campion TJ; Rauscher KM; Sobotka-Briner H; Senior M; Gordon G; Smith GM; Spence AJ PLoS One; 2022; 17(5):e0268603. PubMed ID: 35544528 [TBL] [Abstract][Full Text] [Related]
5. Cortical and subcortical lesions impair skilled walking in the ladder rung walking test: a new task to evaluate fore- and hindlimb stepping, placing, and co-ordination. Metz GA; Whishaw IQ J Neurosci Methods; 2002 Apr; 115(2):169-79. PubMed ID: 11992668 [TBL] [Abstract][Full Text] [Related]
6. Task specific adaptations in rat locomotion: runway versus horizontal ladder. Bolton DA; Tse AD; Ballermann M; Misiaszek JE; Fouad K Behav Brain Res; 2006 Apr; 168(2):272-9. PubMed ID: 16406145 [TBL] [Abstract][Full Text] [Related]
7. Rats anticipate damaged rungs on the elevated ladder: Applications for rodent models of Parkinson's disease. Lopatin D; Caputo N; Damphousse C; Pandey S; Cohen J J Integr Neurosci; 2015 Mar; 14(1):97-120. PubMed ID: 25747570 [TBL] [Abstract][Full Text] [Related]
8. Detection of chronic sensorimotor impairments in the ladder rung walking task in rats with endothelin-1-induced mild focal ischemia. Riek-Burchardt M; Henrich-Noack P; Metz GA; Reymann KG J Neurosci Methods; 2004 Aug; 137(2):227-33. PubMed ID: 15262065 [TBL] [Abstract][Full Text] [Related]
9. Role of the cerebellum and motor cortex in the regulation of visually controlled locomotion. Armstrong DM; Marple-Horvat DE Can J Physiol Pharmacol; 1996 Apr; 74(4):443-55. PubMed ID: 8828890 [TBL] [Abstract][Full Text] [Related]
11. Contralateral peripheral neurotization for a hemiplegic hindlimb after central neurological injury. Zheng MX; Hua XY; Jiang S; Qiu YQ; Shen YD; Xu WD J Neurosurg; 2018 Jan; 128(1):304-311. PubMed ID: 28338437 [TBL] [Abstract][Full Text] [Related]
12. Novel Speed-Controlled Automated Ladder Walking Device Reveals Walking Speed as a Critical Determinant of Skilled Locomotion after a Spinal Cord Injury in Adult Rats. Richards TM; Sharma P; Kuang A; Whitty D; Ahmed Z; Shah PK J Neurotrauma; 2019 Sep; 36(18):2698-2721. PubMed ID: 30688140 [TBL] [Abstract][Full Text] [Related]
13. Bilateral alteration in stepping pattern after unilateral motor cortex injury: a new test strategy for analysis of skilled limb movements in neurological mouse models. Farr TD; Liu L; Colwell KL; Whishaw IQ; Metz GA J Neurosci Methods; 2006 May; 153(1):104-13. PubMed ID: 16309746 [TBL] [Abstract][Full Text] [Related]
14. Objective measures of motor dysfunction after compression spinal cord injury in adult rats: correlations with locomotor rating scores. Semler J; Wellmann K; Wirth F; Stein G; Angelova S; Ashrafi M; Schempf G; Ankerne J; Ozsoy O; Ozsoy U; Schönau E; Angelov DN; Irintchev A J Neurotrauma; 2011 Jul; 28(7):1247-58. PubMed ID: 21428717 [TBL] [Abstract][Full Text] [Related]
15. A 3D analysis of fore- and hindlimb motion during locomotion: comparison of overground and ladder walking in rats. Garnier C; Falempin M; Canu MH Behav Brain Res; 2008 Jan; 186(1):57-65. PubMed ID: 17764759 [TBL] [Abstract][Full Text] [Related]
16. Adaptation of a ladder beam walking task to assess locomotor recovery in mice following spinal cord injury. Cummings BJ; Engesser-Cesar C; Cadena G; Anderson AJ Behav Brain Res; 2007 Feb; 177(2):232-41. PubMed ID: 17197044 [TBL] [Abstract][Full Text] [Related]
17. Quantification of locomotor recovery following spinal cord contusion in adult rats. McEwen ML; Springer JE J Neurotrauma; 2006 Nov; 23(11):1632-53. PubMed ID: 17115910 [TBL] [Abstract][Full Text] [Related]
18. Chemogenetic modulation of sensory afferents induces locomotor changes and plasticity after spinal cord injury. Eisdorfer JT; Sobotka-Briner H; Schramfield S; Moukarzel G; Chen J; Campion TJ; Smit R; Rauscher BC; Lemay MA; Smith GM; Spence AJ Front Mol Neurosci; 2022; 15():872634. PubMed ID: 36090254 [TBL] [Abstract][Full Text] [Related]
19. Kinematic analysis of limb position during quadrupedal locomotion in rats. Broton JG; Nikolic Z; Suys S; Calancie B J Neurotrauma; 1996 Jul; 13(7):409-16. PubMed ID: 8863196 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of Five Tests for Sensitivity to Functional Deficits following Cervical or Thoracic Dorsal Column Transection in the Rat. Fagoe ND; Attwell CL; Eggers R; Tuinenbreijer L; Kouwenhoven D; Verhaagen J; Mason MR PLoS One; 2016; 11(3):e0150141. PubMed ID: 26934672 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]