These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 33544847)

  • 1. Advancement in predicting interactions between drugs used to treat psoriasis and its comorbidities by integrating molecular and clinical resources.
    Patrick MT; Bardhi R; Raja K; He K; Tsoi LC
    J Am Med Inform Assoc; 2021 Jun; 28(6):1159-1167. PubMed ID: 33544847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning-based prediction of drug-drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties.
    Cheng F; Zhao Z
    J Am Med Inform Assoc; 2014 Oct; 21(e2):e278-86. PubMed ID: 24644270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Positive-Unlabeled Learning for inferring drug interactions based on heterogeneous attributes.
    Hameed PN; Verspoor K; Kusljic S; Halgamuge S
    BMC Bioinformatics; 2017 Mar; 18(1):140. PubMed ID: 28249566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting Drug-Drug Interactions Based on Integrated Similarity and Semi-Supervised Learning.
    Yan C; Duan G; Zhang Y; Wu FX; Pan Y; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):168-179. PubMed ID: 32310779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predict multi-type drug-drug interactions in cold start scenario.
    Liu Z; Wang XN; Yu H; Shi JY; Dong WM
    BMC Bioinformatics; 2022 Feb; 23(1):75. PubMed ID: 35172712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting drug-drug interactions by graph convolutional network with multi-kernel.
    Wang F; Lei X; Liao B; Wu FX
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34864856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data-driven prediction of adverse drug reactions induced by drug-drug interactions.
    Liu R; AbdulHameed MDM; Kumar K; Yu X; Wallqvist A; Reifman J
    BMC Pharmacol Toxicol; 2017 Jun; 18(1):44. PubMed ID: 28595649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DDI-PULearn: a positive-unlabeled learning method for large-scale prediction of drug-drug interactions.
    Zheng Y; Peng H; Zhang X; Zhao Z; Gao X; Li J
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):661. PubMed ID: 31870276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting and understanding comprehensive drug-drug interactions via semi-nonnegative matrix factorization.
    Yu H; Mao KT; Shi JY; Huang H; Chen Z; Dong K; Yiu SM
    BMC Syst Biol; 2018 Apr; 12(Suppl 1):14. PubMed ID: 29671393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BioDKG-DDI: predicting drug-drug interactions based on drug knowledge graph fusing biochemical information.
    Ren ZH; Yu CQ; Li LP; You ZH; Guan YJ; Wang XF; Pan J
    Brief Funct Genomics; 2022 May; 21(3):216-229. PubMed ID: 35368060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prescribers' knowledge of and sources of information for potential drug-drug interactions: a postal survey of US prescribers.
    Ko Y; Malone DC; Skrepnek GH; Armstrong EP; Murphy JE; Abarca J; Rehfeld RA; Reel SJ; Woosley RL
    Drug Saf; 2008; 31(6):525-36. PubMed ID: 18484786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacointeraction network models predict unknown drug-drug interactions.
    Cami A; Manzi S; Arnold A; Reis BY
    PLoS One; 2013; 8(4):e61468. PubMed ID: 23620757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DPDDI: a deep predictor for drug-drug interactions.
    Feng YH; Zhang SW; Shi JY
    BMC Bioinformatics; 2020 Sep; 21(1):419. PubMed ID: 32972364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TMFUF: a triple matrix factorization-based unified framework for predicting comprehensive drug-drug interactions of new drugs.
    Shi JY; Huang H; Li JX; Lei P; Zhang YN; Dong K; Yiu SM
    BMC Bioinformatics; 2018 Nov; 19(Suppl 14):411. PubMed ID: 30453924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multimodal deep learning framework for predicting drug-drug interaction events.
    Deng Y; Xu X; Qiu Y; Xia J; Zhang W; Liu S
    Bioinformatics; 2020 Aug; 36(15):4316-4322. PubMed ID: 32407508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AttentionDDI: Siamese attention-based deep learning method for drug-drug interaction predictions.
    Schwarz K; Allam A; Perez Gonzalez NA; Krauthammer M
    BMC Bioinformatics; 2021 Aug; 22(1):412. PubMed ID: 34418954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DDIWAS: High-throughput electronic health record-based screening of drug-drug interactions.
    Wu P; Nelson SD; Zhao J; Stone CA; Feng Q; Chen Q; Larson EA; Li B; Cox NJ; Stein CM; Phillips EJ; Roden DM; Denny JC; Wei WQ
    J Am Med Inform Assoc; 2021 Jul; 28(7):1421-1430. PubMed ID: 33712848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of Drug-Drug Interactions by Using Profile Fingerprint Vectors and Protein Similarities.
    Dere S; Ayvaz S
    Healthc Inform Res; 2020 Jan; 26(1):42-49. PubMed ID: 32082699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracting drug-enzyme relation from literature as evidence for drug drug interaction.
    Zhang Y; Wu HY; Du J; Xu J; Wang J; Tao C; Li L; Xu H
    J Biomed Semantics; 2016; 7():11. PubMed ID: 26955465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SubGE-DDI: A new prediction model for drug-drug interaction established through biomedical texts and drug-pairs knowledge subgraph enhancement.
    Shi Y; He M; Chen J; Han F; Cai Y
    PLoS Comput Biol; 2024 Apr; 20(4):e1011989. PubMed ID: 38626249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.