These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33544971)

  • 1. Molecular Engineering of Aromatic Imides for Organic Secondary Batteries.
    Li L; Yin YJ; Hei JP; Wan XJ; Li ML; Cui Y
    Small; 2021 Mar; 17(10):e2005752. PubMed ID: 33544971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Engineering of Perylene Imides for High-Performance Lithium Batteries: Diels-Alder Extension and Chiral Dimerization.
    Li L; Hong YJ; Chen DY; Lin MJ
    Chemistry; 2017 Nov; 23(65):16612-16620. PubMed ID: 28967155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic Electroactive Materials for Aqueous Redox Flow Batteries.
    Yang G; Zhu Y; Hao Z; Lu Y; Zhao Q; Zhang K; Chen J
    Adv Mater; 2023 Aug; 35(33):e2301898. PubMed ID: 37158492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic Carbonyl Compounds for Sodium-Ion Batteries: Recent Progress and Future Perspectives.
    Wang HG; Zhang XB
    Chemistry; 2018 Dec; 24(69):18235-18245. PubMed ID: 30007002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable Bifunctional Perylene Imide Radicals for High-Performance Organic-Lithium Redox-Flow Batteries.
    Li L; Gong HX; Chen DY; Lin MJ
    Chemistry; 2018 Sep; 24(50):13188-13196. PubMed ID: 29923233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Engineering with Organic Carbonyl Electrode Materials for Advanced Stationary and Redox Flow Rechargeable Batteries.
    Zhao Q; Zhu Z; Chen J
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28370809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Progress and Prospect of Tunable Organic Molecules for Organic Lithium-Ion Batteries.
    Xu D; Liang M; Qi S; Sun W; Lv LP; Du FH; Wang B; Chen S; Wang Y; Yu Y
    ACS Nano; 2021 Jan; 15(1):47-80. PubMed ID: 33382596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Design Strategy for High-Redox-Potential and Poorly Soluble n-Type Phenazine Derivatives as Cathode Materials for Lithium Batteries.
    Miao L; Liu L; Zhang K; Chen J
    ChemSusChem; 2020 May; 13(9):2337-2344. PubMed ID: 31968154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling the Role of Aromatic Ring Size in Tuning the Electrochemical Performance of Small-Molecule Imide Cathodes for Lithium-Ion Batteries.
    Chen J; Gu S; Hao R; Liu K; Wang Z; Li Z; Yuan H; Guo H; Zhang K; Lu Z
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):44330-44337. PubMed ID: 36125517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing High Performance Organic Batteries.
    Chen Y; Wang C
    Acc Chem Res; 2020 Nov; 53(11):2636-2647. PubMed ID: 32976710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic Electroactive Molecule-Based Electrolytes for Redox Flow Batteries: Status and Challenges of Molecular Design.
    Zhong F; Yang M; Ding M; Jia C
    Front Chem; 2020; 8():451. PubMed ID: 32637392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Progress in Organic Electrodes for Li and Na Rechargeable Batteries.
    Lee S; Kwon G; Ku K; Yoon K; Jung SK; Lim HD; Kang K
    Adv Mater; 2018 Oct; 30(42):e1704682. PubMed ID: 29582467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox-Active Porous Organic Polymers as Novel Electrode Materials for Green Rechargeable Sodium-Ion Batteries.
    Weeraratne KS; Alzharani AA; El-Kaderi HM
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23520-23526. PubMed ID: 31180204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel High-Capacity Anode Material Derived from Aromatic Imides for Lithium-Ion Batteries.
    Wang Y; Liu Z; Liu H; Liu H; Li B; Guan S
    Small; 2018 Apr; 14(17):e1704094. PubMed ID: 29611307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Progress in Polymeric Carbonyl-Based Electrode Materials for Lithium and Sodium Ion Batteries.
    Amin K; Mao L; Wei Z
    Macromol Rapid Commun; 2019 Jan; 40(1):e1800565. PubMed ID: 30411834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of Complex Nanomaterials for Energy Storage: Past Success and Future Opportunity.
    Liu Y; Zhou G; Liu K; Cui Y
    Acc Chem Res; 2017 Dec; 50(12):2895-2905. PubMed ID: 29206446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyanion-Type Electrode Materials for Sodium-Ion Batteries.
    Ni Q; Bai Y; Wu F; Wu C
    Adv Sci (Weinh); 2017 Mar; 4(3):1600275. PubMed ID: 28331782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Performance Organic Lithium Batteries with an Ether-Based Electrolyte and 9,10-Anthraquinone (AQ)/CMK-3 Cathode.
    Zhang K; Guo C; Zhao Q; Niu Z; Chen J
    Adv Sci (Weinh); 2015 May; 2(5):1500018. PubMed ID: 27980937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. s-Tetrazines as a New Electrode-Active Material for Secondary Batteries.
    Min DJ; Miomandre F; Audebert P; Kwon JE; Park SY
    ChemSusChem; 2019 Jan; 12(2):503-510. PubMed ID: 30338641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.