These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 33545007)
1. Large-Scale Fabrication of Wettability-Controllable Coatings for Optimizing Condensate Transfer Ability. Wang S; Zhao X; Teng Y; Chen X; Ahuja R Langmuir; 2021 Feb; 37(7):2476-2484. PubMed ID: 33545007 [TBL] [Abstract][Full Text] [Related]
2. Lattice Boltzmann Modeling of Condensation Heat Transfer on Downward-Facing Surfaces with Different Wettabilities. Wang X; Xu B; Chen Z; Yang Y; Cao Q Langmuir; 2020 Aug; 36(31):9204-9214. PubMed ID: 32660253 [TBL] [Abstract][Full Text] [Related]
3. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation. Mondal B; Mac Giolla Eain M; Xu Q; Egan VM; Punch J; Lyons AM ACS Appl Mater Interfaces; 2015 Oct; 7(42):23575-88. PubMed ID: 26372672 [TBL] [Abstract][Full Text] [Related]
4. Biomimetic Fabrication of Janus Fabric with Asymmetric Wettability for Water Purification and Hydrophobic/Hydrophilic Patterned Surfaces for Fog Harvesting. Zhu R; Liu M; Hou Y; Zhang L; Li M; Wang D; Wang D; Fu S ACS Appl Mater Interfaces; 2020 Nov; 12(44):50113-50125. PubMed ID: 33085450 [TBL] [Abstract][Full Text] [Related]
5. High-Efficiency Condensation Heat Transfer Interfaces Based on Superwetting Copper Microgroove/Nanocone Structure. Tian Y; Chen S; Gao A; Wang R; Gao X ACS Appl Mater Interfaces; 2024 Oct; 16(40):53315-53323. PubMed ID: 39333872 [TBL] [Abstract][Full Text] [Related]
6. Recurrent filmwise and dropwise condensation on a beetle mimetic surface. Hou Y; Yu M; Chen X; Wang Z; Yao S ACS Nano; 2015 Jan; 9(1):71-81. PubMed ID: 25482594 [TBL] [Abstract][Full Text] [Related]
7. Preferred Mode of Atmospheric Water Vapor Condensation on Nanoengineered Surfaces: Dropwise or Filmwise? Thomas TM; Sinha Mahapatra P; Ganguly R; Tiwari MK Langmuir; 2023 Apr; 39(15):5396-5407. PubMed ID: 37014297 [TBL] [Abstract][Full Text] [Related]
8. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery. Hu HW; Tang GH; Niu D Sci Rep; 2016 Jun; 6():27274. PubMed ID: 27270997 [TBL] [Abstract][Full Text] [Related]
9. Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation. Wen R; Xu S; Zhao D; Lee YC; Ma X; Yang R ACS Appl Mater Interfaces; 2017 Dec; 9(51):44911-44921. PubMed ID: 29214806 [TBL] [Abstract][Full Text] [Related]
10. Gravitationally Driven Wicking for Enhanced Condensation Heat Transfer. Preston DJ; Wilke KL; Lu Z; Cruz SS; Zhao Y; Becerra LL; Wang EN Langmuir; 2018 Apr; 34(15):4658-4664. PubMed ID: 29578348 [TBL] [Abstract][Full Text] [Related]
11. Hybrid Wettability-Induced Heat Transfer Enhancement for Condensation with NonCondensable Gas. Shen LY; Tang GH; Li Q; Shi Y Langmuir; 2019 Jul; 35(29):9430-9440. PubMed ID: 31282674 [TBL] [Abstract][Full Text] [Related]
13. Effects of Engineered Wettability on the Efficiency of Dew Collection. Gerasopoulos K; Luedeman WL; Ölçeroglu E; McCarthy M; Benkoski JJ ACS Appl Mater Interfaces; 2018 Jan; 10(4):4066-4076. PubMed ID: 29297673 [TBL] [Abstract][Full Text] [Related]
14. Density Maximization of One-Step Electrodeposited Copper Nanocones and Dropwise Condensation Heat-Transfer Performance Evaluation. Wang R; Wu F; Xing D; Yu F; Gao X ACS Appl Mater Interfaces; 2020 May; 12(21):24512-24520. PubMed ID: 32363858 [TBL] [Abstract][Full Text] [Related]
15. Water harvest via dewing. Lee A; Moon MW; Lim H; Kim WD; Kim HY Langmuir; 2012 Jul; 28(27):10183-91. PubMed ID: 22731870 [TBL] [Abstract][Full Text] [Related]
16. Patterned Polymer Coatings Increase the Efficiency of Dew Harvesting. Al-Khayat O; Hong JK; Beck DM; Minett AI; Neto C ACS Appl Mater Interfaces; 2017 Apr; 9(15):13676-13684. PubMed ID: 28224792 [TBL] [Abstract][Full Text] [Related]
17. The effects of surface wettability on the fog and dew moisture harvesting performance on tubular surfaces. Seo D; Lee J; Lee C; Nam Y Sci Rep; 2016 Apr; 6():24276. PubMed ID: 27063149 [TBL] [Abstract][Full Text] [Related]
18. Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer. Xiao R; Miljkovic N; Enright R; Wang EN Sci Rep; 2013; 3():1988. PubMed ID: 23759735 [TBL] [Abstract][Full Text] [Related]
19. Enhanced Condensation on Liquid-Infused Nanoporous Surfaces by Vibration-Assisted Droplet Sweeping. Oh I; Cha H; Chen J; Chavan S; Kong H; Miljkovic N; Hu Y ACS Nano; 2020 Oct; 14(10):13367-13379. PubMed ID: 33064463 [TBL] [Abstract][Full Text] [Related]
20. Investigation of Dropwise Condensation Heat Transfer on Laser-Ablated Superhydrophobic/Hydrophilic Hybrid Copper Surfaces. Song Z; Lu M; Chen X ACS Omega; 2020 Sep; 5(37):23588-23595. PubMed ID: 32984678 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]