These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33545045)

  • 21. Estimation of spatiotemporal trends in bat abundance from mortality data collected at wind turbines.
    Davy CM; Squires K; Zimmerling JR
    Conserv Biol; 2021 Feb; 35(1):227-238. PubMed ID: 32424911
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Urban areas affect flight altitudes of nocturnally migrating birds.
    Cabrera-Cruz SA; Smolinsky JA; McCarthy KP; Buler JJ
    J Anim Ecol; 2019 Dec; 88(12):1873-1887. PubMed ID: 31330569
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Behavior of bats at wind turbines.
    Cryan PM; Gorresen PM; Hein CD; Schirmacher MR; Diehl RH; Huso MM; Hayman DT; Fricker PD; Bonaccorso FJ; Johnson DH; Heist K; Dalton DC
    Proc Natl Acad Sci U S A; 2014 Oct; 111(42):15126-31. PubMed ID: 25267628
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Common noctules exploit low levels of the aerosphere.
    O'Mara MT; Wikelski M; Kranstauber B; Dechmann DKN
    R Soc Open Sci; 2019 Feb; 6(2):181942. PubMed ID: 30891300
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flight speed and performance of the wandering albatross with respect to wind.
    Richardson PL; Wakefield ED; Phillips RA
    Mov Ecol; 2018; 6():3. PubMed ID: 29556395
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Commuting fruit bats beneficially modulate their flight in relation to wind.
    Sapir N; Horvitz N; Dechmann DK; Fahr J; Wikelski M
    Proc Biol Sci; 2014 May; 281(1782):20140018. PubMed ID: 24648227
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Geographic origins and population genetics of bats killed at wind-energy facilities.
    Pylant CL; Nelson DM; Fitzpatrick MC; Gates JE; Keller SR
    Ecol Appl; 2016 Jul; 26(5):1381-1395. PubMed ID: 27755755
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Built up areas in a wet landscape are stepping stones for soaring flight in a seabird.
    Sage E; Bouten W; van Dijk W; Camphuysen KCJ; Shamoun-Baranes J
    Sci Total Environ; 2022 Dec; 852():157879. PubMed ID: 35944643
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Trapped in the darkness of the night: thermal and energetic constraints of daylight flight in bats.
    Voigt CC; Lewanzik D
    Proc Biol Sci; 2011 Aug; 278(1716):2311-7. PubMed ID: 21208959
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bats Use Path Integration Rather Than Acoustic Flow to Assess Flight Distance along Flyways.
    Aharon G; Sadot M; Yovel Y
    Curr Biol; 2017 Dec; 27(23):3650-3657.e3. PubMed ID: 29153322
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flying at no mechanical energy cost: disclosing the secret of wandering albatrosses.
    Sachs G; Traugott J; Nesterova AP; Dell'Omo G; Kümmeth F; Heidrich W; Vyssotski AL; Bonadonna F
    PLoS One; 2012; 7(9):e41449. PubMed ID: 22957014
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wind-Related Orientation Patterns in Diurnal, Crepuscular and Nocturnal High-Altitude Insect Migrants.
    Hu G; Lim KS; Reynolds DR; Reynolds AM; Chapman JW
    Front Behav Neurosci; 2016; 10():32. PubMed ID: 26973481
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flight metabolism in relation to speed in Chiroptera: testing the U-shape paradigm in the short-tailed fruit bat Carollia perspicillata.
    von Busse R; Swartz SM; Voigt CC
    J Exp Biol; 2013 Jun; 216(Pt 11):2073-80. PubMed ID: 23430989
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Increased flight altitudes among migrating golden eagles suggest turbine avoidance at a Rocky Mountain wind installation.
    Johnston NN; Bradley JE; Otter KA
    PLoS One; 2014; 9(3):e93030. PubMed ID: 24671199
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wind and route choice affect performance of bees flying above versus within a cluttered obstacle field.
    Burnett NP; Badger MA; Combes SA
    PLoS One; 2022; 17(3):e0265911. PubMed ID: 35325004
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Testing an emerging paradigm in migration ecology shows surprising differences in efficiency between flight modes.
    Duerr AE; Miller TA; Lanzone M; Brandes D; Cooper J; O'Malley K; Maisonneuve C; Tremblay J; Katzner T
    PLoS One; 2012; 7(4):e35548. PubMed ID: 22558166
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Convergent patterns of long-distance nocturnal migration in noctuid moths and passerine birds.
    Alerstam T; Chapman JW; Bäckman J; Smith AD; Karlsson H; Nilsson C; Reynolds DR; Klaassen RH; Hill JK
    Proc Biol Sci; 2011 Oct; 278(1721):3074-80. PubMed ID: 21389024
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monitoring seasonal bat activity on a coastal barrier island in Maryland, USA.
    Johnson JB; Gates JE; Zegre NP
    Environ Monit Assess; 2011 Feb; 173(1-4):685-99. PubMed ID: 20364316
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scaling of wingbeat frequency with body mass in bats and limits to maximum bat size.
    Norberg UM; Norberg RÅ
    J Exp Biol; 2012 Mar; 215(Pt 5):711-22. PubMed ID: 22323193
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Confronting the winds: orientation and flight behaviour of roosting swifts, Apus apus.
    Bäckman J; Alerstam T
    Proc Biol Sci; 2001 May; 268(1471):1081-7. PubMed ID: 11375093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.