These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 33545047)

  • 1. A neuronal blueprint for directional mechanosensation in larval zebrafish.
    Valera G; Markov DA; Bijari K; Randlett O; Asgharsharghi A; Baudoin JP; Ascoli GA; Portugues R; López-Schier H
    Curr Biol; 2021 Apr; 31(7):1463-1475.e6. PubMed ID: 33545047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiology of afferent neurons in larval zebrafish provides a functional framework for lateral line somatotopy.
    Liao JC; Haehnel M
    J Neurophysiol; 2012 May; 107(10):2615-23. PubMed ID: 22338025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Afferent and motoneuron activity in response to single neuromast stimulation in the posterior lateral line of larval zebrafish.
    Haehnel-Taguchi M; Akanyeti O; Liao JC
    J Neurophysiol; 2014 Sep; 112(6):1329-39. PubMed ID: 24966296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional development and regeneration of hair cells in the zebrafish lateral line.
    Hardy K; Amariutei AE; De Faveri F; Hendry A; Marcotti W; Ceriani F
    J Physiol; 2021 Aug; 599(16):3913-3936. PubMed ID: 34143497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rheotaxis in larval zebrafish is mediated by lateral line mechanosensory hair cells.
    Suli A; Watson GM; Rubel EW; Raible DW
    PLoS One; 2012; 7(2):e29727. PubMed ID: 22359538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency response properties of primary afferent neurons in the posterior lateral line system of larval zebrafish.
    Levi R; Akanyeti O; Ballo A; Liao JC
    J Neurophysiol; 2015 Jan; 113(2):657-68. PubMed ID: 25355959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneity and dynamics of lateral line afferent innervation during development in zebrafish (Danio rerio).
    Haehnel M; Taguchi M; Liao JC
    J Comp Neurol; 2012 May; 520(7):1376-86. PubMed ID: 22102005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor Behavior Selectively Inhibits Hair Cells Activated by Forward Motion in the Lateral Line of Zebrafish.
    Pichler P; Lagnado L
    Curr Biol; 2020 Jan; 30(1):150-157.e3. PubMed ID: 31866371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zebrafish larvae exhibit rheotaxis and can escape a continuous suction source using their lateral line.
    Olszewski J; Haehnel M; Taguchi M; Liao JC
    PLoS One; 2012; 7(5):e36661. PubMed ID: 22570735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lateral line ablation by ototoxic compounds results in distinct rheotaxis profiles in larval zebrafish.
    Newton KC; Kacev D; Nilsson SRO; Saettele AL; Golden SA; Sheets L
    Commun Biol; 2023 Jan; 6(1):84. PubMed ID: 36681757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel mechanism for mechanosensory-based rheotaxis in larval zebrafish.
    Oteiza P; Odstrcil I; Lauder G; Portugues R; Engert F
    Nature; 2017 Jul; 547(7664):445-448. PubMed ID: 28700578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directional selectivity of afferent neurons in zebrafish neuromasts is regulated by Emx2 in presynaptic hair cells.
    Ji YR; Warrier S; Jiang T; Wu DK; Kindt KS
    Elife; 2018 Apr; 7():. PubMed ID: 29671737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Transfer Characteristics of Hair Cells Encoding Mechanical Stimuli in the Lateral Line of Zebrafish.
    Pichler P; Lagnado L
    J Neurosci; 2019 Jan; 39(1):112-124. PubMed ID: 30413644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hair cell identity establishes labeled lines of directional mechanosensation.
    Lozano-Ortega M; Valera G; Xiao Y; Faucherre A; López-Schier H
    PLoS Biol; 2018 Jul; 16(7):e2004404. PubMed ID: 30024872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical overstimulation causes acute injury and synapse loss followed by fast recovery in lateral-line neuromasts of larval zebrafish.
    Holmgren M; Ravicz ME; Hancock KE; Strelkova O; Kallogjeri D; Indzhykulian AA; Warchol ME; Sheets L
    Elife; 2021 Oct; 10():. PubMed ID: 34665127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional and ultrastructural analysis of reafferent mechanosensation in larval zebrafish.
    Odstrcil I; Petkova MD; Haesemeyer M; Boulanger-Weill J; Nikitchenko M; Gagnon JA; Oteiza P; Schalek R; Peleg A; Portugues R; Lichtman JW; Engert F
    Curr Biol; 2022 Jan; 32(1):176-189.e5. PubMed ID: 34822765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental and architectural principles of the lateral-line neural map.
    Pujol-Martí J; López-Schier H
    Front Neural Circuits; 2013; 7():47. PubMed ID: 23532704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multispectral four-dimensional imaging reveals that evoked activity modulates peripheral arborization and the selection of plane-polarized targets by sensory neurons.
    Faucherre A; Baudoin JP; Pujol-Martí J; López-Schier H
    Development; 2010 May; 137(10):1635-43. PubMed ID: 20430744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acid-sensing ion channel immunoreactivities in the cephalic neuromasts of adult zebrafish.
    Abbate F; Madrigrano M; Scopitteri T; Levanti M; Cobo JL; Germanà A; Vega JA; Laurà R
    Ann Anat; 2016 Sep; 207():27-31. PubMed ID: 27443821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological recordings from zebrafish lateral-line hair cells and afferent neurons.
    Trapani JG; Nicolson T
    Methods Cell Biol; 2010; 100():219-31. PubMed ID: 21111219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.