These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 33545066)
1. Derivation of Peripheral Nociceptive, Mechanoreceptive, and Proprioceptive Sensory Neurons from the same Culture of Human Pluripotent Stem Cells. Saito-Diaz K; Street JR; Ulrichs H; Zeltner N Stem Cell Reports; 2021 Mar; 16(3):446-457. PubMed ID: 33545066 [TBL] [Abstract][Full Text] [Related]
2. A protocol to differentiate nociceptors, mechanoreceptors, and proprioceptors from human pluripotent stem cells. Saito-Diaz K; Zeltner N STAR Protoc; 2022 Jun; 3(2):101187. PubMed ID: 35330962 [TBL] [Abstract][Full Text] [Related]
3. Isolation of human pluripotent stem cell-derived sensory neuron subtypes by immunopanning. Saito-Diaz K; James C; Patel AJ; Zeltner N Front Cell Dev Biol; 2023; 11():1101423. PubMed ID: 37206924 [TBL] [Abstract][Full Text] [Related]
4. Influencers in the Somatosensory System: Extrinsic Control of Sensory Neuron Phenotypes. de Nooij JC Neuroscientist; 2023 Aug; 29(4):472-487. PubMed ID: 35164585 [TBL] [Abstract][Full Text] [Related]
5. Primary proprioceptive neurons from human induced pluripotent stem cells: a cell model for afferent ataxias. Dionisi C; Rai M; Chazalon M; Schiffmann SN; Pandolfo M Sci Rep; 2020 May; 10(1):7752. PubMed ID: 32385372 [TBL] [Abstract][Full Text] [Related]
6. Scalable generation of sensory neurons from human pluripotent stem cells. Deng T; Jovanovic VM; Tristan CA; Weber C; Chu PH; Inman J; Ryu S; Jethmalani Y; Ferreira de Sousa J; Ormanoglu P; Twumasi P; Sen C; Shim J; Jayakar S; Bear Zhang HX; Jo S; Yu W; Voss TC; Simeonov A; Bean BP; Woolf CJ; Singeç I Stem Cell Reports; 2023 Apr; 18(4):1030-1047. PubMed ID: 37044067 [TBL] [Abstract][Full Text] [Related]
7. Efficient Differentiation of Postganglionic Sympathetic Neurons using Human Pluripotent Stem Cells under Feeder-free and Chemically Defined Culture Conditions. Wu HF; Zeltner N J Vis Exp; 2020 May; (159):. PubMed ID: 32510508 [TBL] [Abstract][Full Text] [Related]
8. Developmental waves of mechanosensitivity acquisition in sensory neuron subtypes during embryonic development. Lechner SG; Frenzel H; Wang R; Lewin GR EMBO J; 2009 May; 28(10):1479-91. PubMed ID: 19322198 [TBL] [Abstract][Full Text] [Related]
9. Association of somatic action potential shape with sensory receptive properties in guinea-pig dorsal root ganglion neurones. Djouhri L; Bleazard L; Lawson SN J Physiol; 1998 Dec; 513 ( Pt 3)(Pt 3):857-72. PubMed ID: 9824723 [TBL] [Abstract][Full Text] [Related]
10. Characterizing human stem cell-derived sensory neurons at the single-cell level reveals their ion channel expression and utility in pain research. Young GT; Gutteridge A; Fox H; Wilbrey AL; Cao L; Cho LT; Brown AR; Benn CL; Kammonen LR; Friedman JH; Bictash M; Whiting P; Bilsland JG; Stevens EB Mol Ther; 2014 Aug; 22(8):1530-1543. PubMed ID: 24832007 [TBL] [Abstract][Full Text] [Related]
11. Adult mouse sensory neurons on microelectrode arrays exhibit increased spontaneous and stimulus-evoked activity in the presence of interleukin-6. Black BJ; Atmaramani R; Kumaraju R; Plagens S; Romero-Ortega M; Dussor G; Price TJ; Campbell ZT; Pancrazio JJ J Neurophysiol; 2018 Sep; 120(3):1374-1385. PubMed ID: 29947589 [TBL] [Abstract][Full Text] [Related]
12. Electrophysiological Analyses of Human Dorsal Root Ganglia and Human Induced Pluripotent Stem Cell-derived Sensory Neurons From Male and Female Donors. Zurek NA; Ehsanian R; Goins AE; Adams IM; Petersen T; Goyal S; Shilling M; Westlund KN; Alles SRA J Pain; 2024 Jun; 25(6):104451. PubMed ID: 38154622 [TBL] [Abstract][Full Text] [Related]
13. How to differentiate induced pluripotent stem cells into sensory neurons for disease modelling: a functional assessment. Kalia AK; Rösseler C; Granja-Vazquez R; Ahmad A; Pancrazio JJ; Neureiter A; Zhang M; Sauter D; Vetter I; Andersson A; Dussor G; Price TJ; Kolber BJ; Truong V; Walsh P; Lampert A Stem Cell Res Ther; 2024 Apr; 15(1):99. PubMed ID: 38581069 [TBL] [Abstract][Full Text] [Related]
14. Efficient and rapid derivation of primitive neural stem cells and generation of brain subtype neurons from human pluripotent stem cells. Yan Y; Shin S; Jha BS; Liu Q; Sheng J; Li F; Zhan M; Davis J; Bharti K; Zeng X; Rao M; Malik N; Vemuri MC Stem Cells Transl Med; 2013 Nov; 2(11):862-70. PubMed ID: 24113065 [TBL] [Abstract][Full Text] [Related]
15. Partial nerve injury induces electrophysiological changes in conducting (uninjured) nociceptive and nonnociceptive DRG neurons: Possible relationships to aspects of peripheral neuropathic pain and paresthesias. Djouhri L; Fang X; Koutsikou S; Lawson SN Pain; 2012 Sep; 153(9):1824-1836. PubMed ID: 22721911 [TBL] [Abstract][Full Text] [Related]
16. Modelling the dorsal root ganglia using human pluripotent stem cells: A platform to study peripheral neuropathies. Viventi S; Dottori M Int J Biochem Cell Biol; 2018 Jul; 100():61-68. PubMed ID: 29772357 [TBL] [Abstract][Full Text] [Related]
18. Generation of Regionally Specific Neural Progenitor Cells (NPCs) and Neurons from Human Pluripotent Stem Cells (hPSCs). Cutts J; Brookhouser N; Brafman DA Methods Mol Biol; 2016; 1516():121-144. PubMed ID: 27106497 [TBL] [Abstract][Full Text] [Related]
19. Incoherent feed-forward regulatory loops control segregation of C-mechanoreceptors, nociceptors, and pruriceptors. Lou S; Pan X; Huang T; Duan B; Yang FC; Yang J; Xiong M; Liu Y; Ma Q J Neurosci; 2015 Apr; 35(13):5317-29. PubMed ID: 25834056 [TBL] [Abstract][Full Text] [Related]
20. Phenotypic and Functional Characterization of Peripheral Sensory Neurons derived from Human Embryonic Stem Cells. Alshawaf AJ; Viventi S; Qiu W; D'Abaco G; Nayagam B; Erlichster M; Chana G; Everall I; Ivanusic J; Skafidas E; Dottori M Sci Rep; 2018 Jan; 8(1):603. PubMed ID: 29330377 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]