These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 33545066)
21. Autonomic Neurons with Sympathetic Character Derived From Human Pluripotent Stem Cells. Saito-Diaz K; Wu HF; Zeltner N Curr Protoc Stem Cell Biol; 2019 Jun; 49(1):e78. PubMed ID: 30702809 [TBL] [Abstract][Full Text] [Related]
22. Exteroceptive, proprioceptive, and sympathetic activity recorded with microelectrodes from human peripheral nerves. Hagbarth KE Mayo Clin Proc; 1979 Jun; 54(6):353-65. PubMed ID: 156292 [TBL] [Abstract][Full Text] [Related]
23. The use of human pluripotent stem cells for the in vitro derivation of cranial placodes and neural crest cells. Borchin BE; Barberi T Curr Top Dev Biol; 2015; 111():497-514. PubMed ID: 25662270 [TBL] [Abstract][Full Text] [Related]
24. Stem Cell-Derived Immature Human Dorsal Root Ganglia Neurons to Identify Peripheral Neurotoxicants. Hoelting L; Klima S; Karreman C; Grinberg M; Meisig J; Henry M; Rotshteyn T; Rahnenführer J; Blüthgen N; Sachinidis A; Waldmann T; Leist M Stem Cells Transl Med; 2016 Apr; 5(4):476-87. PubMed ID: 26933043 [TBL] [Abstract][Full Text] [Related]
25. Deriving Dorsal Spinal Sensory Interneurons from Human Pluripotent Stem Cells. Gupta S; Sivalingam D; Hain S; Makkar C; Sosa E; Clark A; Butler SJ Stem Cell Reports; 2018 Feb; 10(2):390-405. PubMed ID: 29337120 [TBL] [Abstract][Full Text] [Related]
26. Generation of Neural Crest Progenitors from Human Pluripotent Stem Cells. Abu-Bonsrah KD; Viventi S; Newgreen DF; Dottori M Methods Mol Biol; 2019; 1976():37-47. PubMed ID: 30977063 [TBL] [Abstract][Full Text] [Related]
27. Efficient derivation of sympathetic neurons from human pluripotent stem cells with a defined condition. Kirino K; Nakahata T; Taguchi T; Saito MK Sci Rep; 2018 Aug; 8(1):12865. PubMed ID: 30150715 [TBL] [Abstract][Full Text] [Related]
28. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. Lei Y; Schaffer DV Proc Natl Acad Sci U S A; 2013 Dec; 110(52):E5039-48. PubMed ID: 24248365 [TBL] [Abstract][Full Text] [Related]
29. Efficient Generation of Trunk Neural Crest and Sympathetic Neurons from Human Pluripotent Stem Cells Via a Neuromesodermal Axial Progenitor Intermediate. Frith TJR; Tsakiridis A Curr Protoc Stem Cell Biol; 2019 Jun; 49(1):e81. PubMed ID: 30688409 [TBL] [Abstract][Full Text] [Related]
30. Pluripotent stem cell-derived radial glia-like cells as stable intermediate for efficient generation of human oligodendrocytes. Gorris R; Fischer J; Erwes KL; Kesavan J; Peterson DA; Alexander M; Nöthen MM; Peitz M; Quandel T; Karus M; Brüstle O Glia; 2015 Dec; 63(12):2152-67. PubMed ID: 26123132 [TBL] [Abstract][Full Text] [Related]
31. Transcriptional Programming of Human Mechanosensory Neuron Subtypes from Pluripotent Stem Cells. Nickolls AR; Lee MM; Espinoza DF; Szczot M; Lam RM; Wang Q; Beers J; Zou J; Nguyen MQ; Solinski HJ; AlJanahi AA; Johnson KR; Ward ME; Chesler AT; Bönnemann CG Cell Rep; 2020 Jan; 30(3):932-946.e7. PubMed ID: 31968264 [TBL] [Abstract][Full Text] [Related]
32. Methods for Derivation of Multipotent Neural Crest Cells Derived from Human Pluripotent Stem Cells. Avery J; Dalton S Methods Mol Biol; 2016; 1341():197-208. PubMed ID: 25986498 [TBL] [Abstract][Full Text] [Related]
33. c-Maf is required for the development of dorsal horn laminae III/IV neurons and mechanoreceptive DRG axon projections. Hu J; Huang T; Li T; Guo Z; Cheng L J Neurosci; 2012 Apr; 32(16):5362-73. PubMed ID: 22514301 [TBL] [Abstract][Full Text] [Related]
34. Chemically defined and growth-factor-free culture system for the expansion and derivation of human pluripotent stem cells. Yasuda SY; Ikeda T; Shahsavarani H; Yoshida N; Nayer B; Hino M; Vartak-Sharma N; Suemori H; Hasegawa K Nat Biomed Eng; 2018 Mar; 2(3):173-182. PubMed ID: 31015717 [TBL] [Abstract][Full Text] [Related]
35. Regulation of the Na,K-ATPase gamma-subunit FXYD2 by Runx1 and Ret signaling in normal and injured non-peptidergic nociceptive sensory neurons. Ventéo S; Bourane S; Méchaly I; Sar C; Abdel Samad O; Puech S; Blostein R; Valmier J; Pattyn A; Carroll P PLoS One; 2012; 7(1):e29852. PubMed ID: 22253804 [TBL] [Abstract][Full Text] [Related]
36. Dicer maintains the identity and function of proprioceptive sensory neurons. O'Toole SM; Ferrer MM; Mekonnen J; Zhang H; Shima Y; Ladle DR; Nelson SB J Neurophysiol; 2017 Mar; 117(3):1057-1069. PubMed ID: 28003412 [TBL] [Abstract][Full Text] [Related]
37. Human Induced Pluripotent Cell-Derived Sensory Neurons for Fate Commitment of Bone Marrow-Derived Schwann Cells: Implications for Remyelination Therapy. Cai S; Han L; Ao Q; Chan YS; Shum DK Stem Cells Transl Med; 2017 Feb; 6(2):369-381. PubMed ID: 28191772 [TBL] [Abstract][Full Text] [Related]
38. Derivation of Pericytes from Human Pluripotent Stem Cells. Dar A; Itskovitz-Eldor J Methods Mol Biol; 2021; 2235():119-125. PubMed ID: 33576973 [TBL] [Abstract][Full Text] [Related]
39. Recent advances for using human induced-pluripotent stem cells as pain-in-a-dish models of neuropathic pain. Labau JIR; Andelic M; Faber CG; Waxman SG; Lauria G; Dib-Hajj SD Exp Neurol; 2022 Dec; 358():114223. PubMed ID: 36100046 [TBL] [Abstract][Full Text] [Related]
40. Generating high-purity cardiac and endothelial derivatives from patterned mesoderm using human pluripotent stem cells. Palpant NJ; Pabon L; Friedman CE; Roberts M; Hadland B; Zaunbrecher RJ; Bernstein I; Zheng Y; Murry CE Nat Protoc; 2017 Jan; 12(1):15-31. PubMed ID: 27906170 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]