These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 33545176)

  • 1. A general method for quantifying ligand binding to unmodified receptors using Gaussia luciferase.
    Tóth AD; Garger D; Prokop S; Soltész-Katona E; Várnai P; Balla A; Turu G; Hunyady L
    J Biol Chem; 2021; 296():100366. PubMed ID: 33545176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycoprotein-glycoprotein Receptor Binding Detection Using Bioluminescence Resonance Energy Transfer.
    Adamczuk K; Ngo TH; Czapiński J; Rivero-Müller A
    Endocrinology; 2024 Apr; 165(6):. PubMed ID: 38679471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The luminescent HiBiT peptide enables selective quantitation of G protein-coupled receptor ligand engagement and internalization in living cells.
    Boursier ME; Levin S; Zimmerman K; Machleidt T; Hurst R; Butler BL; Eggers CT; Kirkland TA; Wood KV; Friedman Ohana R
    J Biol Chem; 2020 Apr; 295(15):5124-5135. PubMed ID: 32107310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioluminescence in G Protein-Coupled Receptors Drug Screening Using Nanoluciferase and Halo-Tag Technology.
    Schihada H; Nemec K; Lohse MJ; Maiellaro I
    Methods Mol Biol; 2021; 2268():137-147. PubMed ID: 34085266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative measurement of cell membrane receptor internalization by the nanoluciferase reporter: Using the G protein-coupled receptor RXFP3 as a model.
    Liu Y; Song G; Shao XX; Liu YL; Guo ZY
    Biochim Biophys Acta; 2015 Feb; 1848(2):688-94. PubMed ID: 25434927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring GPCR Stoichiometry Using Types-1, -2, and -3 Bioluminescence Resonance Energy Transfer-Based Assays.
    Felce JH; James JR; Davis SJ
    Methods Mol Biol; 2019; 1947():183-197. PubMed ID: 30969417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methods to Monitor the Trafficking of β-Arrestin/G Protein-Coupled Receptor Complexes Using Enhanced Bystander BRET.
    Cao Y; Namkung Y; Laporte SA
    Methods Mol Biol; 2019; 1957():59-68. PubMed ID: 30919346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring the rapid kinetics of receptor-ligand interactions in live cells using NanoBRET.
    Suchankova A; Harris M; Ladds G
    Methods Cell Biol; 2021; 166():1-14. PubMed ID: 34752328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NanoLuc-Based Methods to Measure β-Arrestin2 Recruitment to G Protein-Coupled Receptors.
    Ma X; Leurs R; Vischer HF
    Methods Mol Biol; 2021; 2268():233-248. PubMed ID: 34085273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Integrated Approach toward NanoBRET Tracers for Analysis of GPCR Ligand Engagement.
    Killoran MP; Levin S; Boursier ME; Zimmerman K; Hurst R; Hall MP; Machleidt T; Kirkland TA; Friedman Ohana R
    Molecules; 2021 May; 26(10):. PubMed ID: 34065854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A NanoBRET-Based Binding Assay for Smoothened Allows Real-time Analysis of Ligand Binding and Distinction of Two Binding Sites for BODIPY-cyclopamine.
    Kozielewicz P; Bowin CF; Turku A; Schulte G
    Mol Pharmacol; 2020 Jan; 97(1):23-34. PubMed ID: 31707356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring G protein-coupled receptor and β-arrestin trafficking in live cells using enhanced bystander BRET.
    Namkung Y; Le Gouill C; Lukashova V; Kobayashi H; Hogue M; Khoury E; Song M; Bouvier M; Laporte SA
    Nat Commun; 2016 Jul; 7():12178. PubMed ID: 27397672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioluminescence resonance energy transfer methods to study G protein-coupled receptor-receptor tyrosine kinase heteroreceptor complexes.
    Borroto-Escuela DO; Flajolet M; Agnati LF; Greengard P; Fuxe K
    Methods Cell Biol; 2013; 117():141-64. PubMed ID: 24143976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioluminescence Resonance Energy Transfer (BRET) to Detect the Interactions Between Kappa Opioid Receptor and Nonvisual Arrestins.
    Bedini A
    Methods Mol Biol; 2021; 2201():45-58. PubMed ID: 32975788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Fluorescent Purinoceptor Antagonists for Bioluminescence Resonance Energy Transfer Assays and Fluorescent Microscopy.
    Soave M; Goulding J; Markus R; Hill SJ; Stoddart LA
    Methods Mol Biol; 2020; 2041():163-181. PubMed ID: 31646488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioluminescence Resonance Energy Transfer Approaches to Discover Bias in GPCR Signaling.
    Johnstone EK; Pfleger KD
    Methods Mol Biol; 2015; 1335():191-204. PubMed ID: 26260602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BRET: NanoLuc-Based Bioluminescence Resonance Energy Transfer Platform to Monitor Protein-Protein Interactions in Live Cells.
    Mo XL; Fu H
    Methods Mol Biol; 2016; 1439():263-71. PubMed ID: 27317001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of BRET to monitor ligand binding to GPCRs.
    Stoddart LA; Johnstone EKM; Wheal AJ; Goulding J; Robers MB; Machleidt T; Wood KV; Hill SJ; Pfleger KDG
    Nat Methods; 2015 Jul; 12(7):661-663. PubMed ID: 26030448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NanoBRET Approaches to Study Ligand Binding to GPCRs and RTKs.
    Stoddart LA; Kilpatrick LE; Hill SJ
    Trends Pharmacol Sci; 2018 Feb; 39(2):136-147. PubMed ID: 29132917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NanoBRET ligand binding at a GPCR under endogenous promotion facilitated by CRISPR/Cas9 genome editing.
    White CW; Johnstone EKM; See HB; Pfleger KDG
    Cell Signal; 2019 Feb; 54():27-34. PubMed ID: 30471466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.