These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 33545609)
1. Integrative analysis of transcriptome and metabolome reveal mechanism of tolerance to salt stress in oat (Avena sativa L.). Xu Z; Chen X; Lu X; Zhao B; Yang Y; Liu J Plant Physiol Biochem; 2021 Mar; 160():315-328. PubMed ID: 33545609 [TBL] [Abstract][Full Text] [Related]
2. Metabolomics and transcriptomics reveal defense mechanism of rice (Oryza sativa) grains under stress of 2,2',4,4'-tetrabromodiphenyl ether. Chen J; Le XC; Zhu L Environ Int; 2019 Dec; 133(Pt A):105154. PubMed ID: 31521816 [TBL] [Abstract][Full Text] [Related]
3. Transcriptomic and metabolomic analyses reveal mechanisms of adaptation to salinity in which carbon and nitrogen metabolism is altered in sugar beet roots. Liu L; Wang B; Liu D; Zou C; Wu P; Wang Z; Wang Y; Li C BMC Plant Biol; 2020 Apr; 20(1):138. PubMed ID: 32245415 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of salt tolerance of oat cultivars and the mechanism of adaptation to salinity. Zhang MX; Bai R; Nan M; Ren W; Wang CM; Shabala S; Zhang JL J Plant Physiol; 2022 Jun; 273():153708. PubMed ID: 35504119 [TBL] [Abstract][Full Text] [Related]
5. Comprehensive transcriptome and metabolome profiling reveal metabolic mechanisms of Nitraria sibirica Pall. to salt stress. Li H; Tang X; Yang X; Zhang H Sci Rep; 2021 Jun; 11(1):12878. PubMed ID: 34145354 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome and metabolome analyses of two contrasting sesame genotypes reveal the crucial biological pathways involved in rapid adaptive response to salt stress. Zhang Y; Li D; Zhou R; Wang X; Dossa K; Wang L; Zhang Y; Yu J; Gong H; Zhang X; You J BMC Plant Biol; 2019 Feb; 19(1):66. PubMed ID: 30744558 [TBL] [Abstract][Full Text] [Related]
7. Integrative analysis of transcriptome and metabolome reveal the differential tolerance mechanisms to low and high salinity in the roots of facultative halophyte Avicennia marina. Li J; Xu CQ; Song LY; Guo ZJ; Zhang LD; Tang HC; Wang JC; Song SW; Liu JW; Zhong YH; Chi BJ; Zhu XY; Zheng HL Tree Physiol; 2024 Aug; 44(8):. PubMed ID: 38976033 [TBL] [Abstract][Full Text] [Related]
8. Combined transcriptome and metabolome reveal glutathione metabolism plays a critical role in resistance to salinity in rice landraces HD961. Yang S; Liu M; Chu N; Chen G; Wang P; Mo J; Guo H; Xu J; Zhou H Front Plant Sci; 2022; 13():952595. PubMed ID: 36160959 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome analysis of hexaploid hulless oat in response to salinity stress. Wu B; Hu Y; Huo P; Zhang Q; Chen X; Zhang Z PLoS One; 2017; 12(2):e0171451. PubMed ID: 28192458 [TBL] [Abstract][Full Text] [Related]
10. Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa). Sapre S; Gontia-Mishra I; Tiwari S Microbiol Res; 2018 Jan; 206():25-32. PubMed ID: 29146257 [TBL] [Abstract][Full Text] [Related]
11. Comparative Transcriptional Profiling and Physiological Responses of Two Contrasting Oat Genotypes under Salt Stress. Wu B; Munkhtuya Y; Li J; Hu Y; Zhang Q; Zhang Z Sci Rep; 2018 Nov; 8(1):16248. PubMed ID: 30389990 [TBL] [Abstract][Full Text] [Related]
12. Comparative Physiological and Transcriptomic Analyses of Oat ( Zhou X; Wang M; Yang L; Wang W; Zhang Y; Liu L; Chai J; Liu H; Zhao G Plants (Basel); 2024 Aug; 13(16):. PubMed ID: 39204673 [TBL] [Abstract][Full Text] [Related]
13. Transcriptome analysis of grapevine under salinity and identification of key genes responsible for salt tolerance. Das P; Majumder AL Funct Integr Genomics; 2019 Jan; 19(1):61-73. PubMed ID: 30046943 [TBL] [Abstract][Full Text] [Related]
14. Integrated physiological, proteomic, and metabolomic analyses of pecan cultivar 'Pawnee' adaptation to salt stress. Jiao Y; Zhang J; Pan C Sci Rep; 2022 Feb; 12(1):1841. PubMed ID: 35115595 [TBL] [Abstract][Full Text] [Related]
15. Transcriptomic and Metabolomic Analyses Reveal the Importance of Lipid Metabolism and Photosynthesis Regulation in High Salinity Tolerance in Barley ( Xu H; Halford NG; Guo G; Chen Z; Li Y; Zhou L; Liu C; Xu R Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069082 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome and metabolome analyses provide insights into root and root-released organic anion responses to phosphorus deficiency in oat. Wang Y; Lysøe E; Armarego-Marriott T; Erban A; Paruch L; van Eerde A; Bock R; Liu-Clarke J J Exp Bot; 2018 Jun; 69(15):3759-3771. PubMed ID: 29757407 [TBL] [Abstract][Full Text] [Related]
17. Combined transcriptome and metabolome analysis revealed pathways involved in improved salt tolerance of Gossypium hirsutum L. seedlings in response to exogenous melatonin application. Ren W; Chen L; Xie ZM; Peng X BMC Plant Biol; 2022 Nov; 22(1):552. PubMed ID: 36451095 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress. Shi P; Gu M BMC Plant Biol; 2020 Dec; 20(1):568. PubMed ID: 33380327 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome revealed the molecular mechanism of Glycyrrhiza inflata root to maintain growth and development, absorb and distribute ions under salt stress. Xu Y; Lu JH; Zhang JD; Liu DK; Wang Y; Niu QD; Huang DD BMC Plant Biol; 2021 Dec; 21(1):599. PubMed ID: 34915868 [TBL] [Abstract][Full Text] [Related]
20. Metabolic and Physiological Changes in the Roots of Two Oat Cultivars in Response to Complex Saline-Alkali Stress. Gao Y; Jin Y; Guo W; Xue Y; Yu L Front Plant Sci; 2022; 13():835414. PubMed ID: 35422836 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]