These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 33545639)
1. A novel segmentation method for cervical vertebrae based on PointNet++ and converge segmentation. Zhang L; Wang H Comput Methods Programs Biomed; 2021 Mar; 200():105798. PubMed ID: 33545639 [TBL] [Abstract][Full Text] [Related]
2. Fully automatic cervical vertebrae segmentation framework for X-ray images. Al Arif SMMR; Knapp K; Slabaugh G Comput Methods Programs Biomed; 2018 Apr; 157():95-111. PubMed ID: 29477438 [TBL] [Abstract][Full Text] [Related]
3. VertXNet: an ensemble method for vertebral body segmentation and identification from cervical and lumbar spinal X-rays. Chen Y; Mo Y; Readie A; Ligozio G; Mandal I; Jabbar F; Coroller T; Papież BW Sci Rep; 2024 Feb; 14(1):3341. PubMed ID: 38336974 [TBL] [Abstract][Full Text] [Related]
4. VolHOG: a volumetric object recognition approach based on bivariate histograms of oriented gradients for vertebra detection in cervical spine MRI. Daenzer S; Freitag S; von Sachsen S; Steinke H; Groll M; Meixensberger J; Leimert M Med Phys; 2014 Aug; 41(8):082305. PubMed ID: 25086554 [TBL] [Abstract][Full Text] [Related]
5. Sparse intervertebral fence composition for 3D cervical vertebra segmentation. Liu X; Yang J; Song S; Cong W; Jiao P; Song H; Ai D; Jiang Y; Wang Y Phys Med Biol; 2018 Jun; 63(11):115010. PubMed ID: 29869618 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional reconstruction of individual cervical vertebrae from cone-beam computed-tomography images. Shi H; Scarfe WC; Farman AG Am J Orthod Dentofacial Orthop; 2007 Mar; 131(3):426-32. PubMed ID: 17346601 [TBL] [Abstract][Full Text] [Related]
7. Lumbar spine segmentation method based on deep learning. Lu H; Li M; Yu K; Zhang Y; Yu L J Appl Clin Med Phys; 2023 Jun; 24(6):e13996. PubMed ID: 37082799 [TBL] [Abstract][Full Text] [Related]
8. Fully automated 3D segmentation and separation of multiple cervical vertebrae in CT images using a 2D convolutional neural network. Bae HJ; Hyun H; Byeon Y; Shin K; Cho Y; Song YJ; Yi S; Kuh SU; Yeom JS; Kim N Comput Methods Programs Biomed; 2020 Feb; 184():105119. PubMed ID: 31627152 [TBL] [Abstract][Full Text] [Related]
9. Vertebra identification using template matching modelmp and K-means clustering. Larhmam MA; Benjelloun M; Mahmoudi S Int J Comput Assist Radiol Surg; 2014 Mar; 9(2):177-87. PubMed ID: 23881250 [TBL] [Abstract][Full Text] [Related]
10. Iterative fully convolutional neural networks for automatic vertebra segmentation and identification. Lessmann N; van Ginneken B; de Jong PA; Išgum I Med Image Anal; 2019 Apr; 53():142-155. PubMed ID: 30771712 [TBL] [Abstract][Full Text] [Related]
12. On the creation of a segmentation library for digitized cervical and lumbar spine radiographs. Gururajan A; Kamalakannan S; Sari-Sarraf H; Shahriar M; Long R; Antani S Comput Med Imaging Graph; 2011 Jun; 35(4):251-65. PubMed ID: 21377835 [TBL] [Abstract][Full Text] [Related]
13. A Region-Based Deep Level Set Formulation for Vertebral Bone Segmentation of Osteoporotic Fractures. Rehman F; Ali Shah SI; Riaz MN; Gilani SO; R F J Digit Imaging; 2020 Feb; 33(1):191-203. PubMed ID: 31011954 [TBL] [Abstract][Full Text] [Related]
14. Reduced field-of-view DTI segmentation of cervical spine tissue. Tang L; Wen Y; Zhou Z; von Deneen KM; Huang D; Ma L Magn Reson Imaging; 2013 Nov; 31(9):1507-14. PubMed ID: 23993792 [TBL] [Abstract][Full Text] [Related]
15. Learning-based vertebra localization and labeling in 3D CT data of possibly incomplete and pathological spines. Jakubicek R; Chmelik J; Jan J; Ourednicek P; Lambert L; Gavelli G Comput Methods Programs Biomed; 2020 Jan; 183():105081. PubMed ID: 31600607 [TBL] [Abstract][Full Text] [Related]
16. Automatic segmentation of vertebrae in 3D CT images using adaptive fast 3D pulse coupled neural networks. Zareie M; Parsaei H; Amiri S; Awan MS; Ghofrani M Australas Phys Eng Sci Med; 2018 Dec; 41(4):1009-1020. PubMed ID: 30377948 [TBL] [Abstract][Full Text] [Related]
17. Attention Gate Based Dual-Pathway Network for Vertebra Segmentation of X-Ray Spine Images. Shi W; Xu T; Yang H; Xi Y; Du Y; Li J; Li J IEEE J Biomed Health Inform; 2022 Aug; 26(8):3976-3987. PubMed ID: 35290194 [TBL] [Abstract][Full Text] [Related]
18. In vivo three-dimensional kinematics of the cervical spine during maximal active head rotation. Kang J; Chen G; Zhai X; He X PLoS One; 2019; 14(4):e0215357. PubMed ID: 30990826 [TBL] [Abstract][Full Text] [Related]
19. Spine detection in CT and MR using iterated marginal space learning. Michael Kelm B; Wels M; Kevin Zhou S; Seifert S; Suehling M; Zheng Y; Comaniciu D Med Image Anal; 2013 Dec; 17(8):1283-92. PubMed ID: 23265800 [TBL] [Abstract][Full Text] [Related]
20. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets. Hu P; Wu F; Peng J; Bao Y; Chen F; Kong D Int J Comput Assist Radiol Surg; 2017 Mar; 12(3):399-411. PubMed ID: 27885540 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]