These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 33545813)
1. An electrochemical sensor based on gold nanoparticles-functionalized reduced graphene oxide screen printed electrode for the detection of pyocyanin biomarker in Pseudomonas aeruginosa infection. Rashid JIA; Kannan V; Ahmad MH; Mon AA; Taufik S; Miskon A; Ong KK; Yusof NA Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111625. PubMed ID: 33545813 [TBL] [Abstract][Full Text] [Related]
2. Rapid and highly sensitive detection of pyocyanin biomarker in different Pseudomonas aeruginosa infections using gold nanoparticles modified sensor. Elkhawaga AA; Khalifa MM; El-Badawy O; Hassan MA; El-Said WA PLoS One; 2019; 14(7):e0216438. PubMed ID: 31361746 [TBL] [Abstract][Full Text] [Related]
3. Sensitive detection of pyoverdine with an electrochemical sensor based on electrochemically generated graphene functionalized with gold nanoparticles. Gandouzi I; Tertis M; Cernat A; Bakhrouf A; Coros M; Pruneanu S; Cristea C Bioelectrochemistry; 2018 Apr; 120():94-103. PubMed ID: 29220744 [TBL] [Abstract][Full Text] [Related]
4. Nanograss sensor for selective detection of Pseudomonas aeruginosa by pyocyanin identification in airway samples. Alatraktchi FA; Dimaki M; Støvring N; Johansen HK; Molin S; Svendsen WE Anal Biochem; 2020 Mar; 593():113586. PubMed ID: 31981486 [TBL] [Abstract][Full Text] [Related]
5. Synergic action of thermosensitive hydrogel and Au/Ag nanoalloy for sensitive and selective detection of pyocyanin. Cernat A; Canciu A; Tertis M; Graur F; Cristea C Anal Bioanal Chem; 2019 Jul; 411(17):3829-3838. PubMed ID: 31172234 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical Detection of Pyocyanin as a Biomarker for Alatraktchi FA; Svendsen WE; Molin S Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32933125 [No Abstract] [Full Text] [Related]
7. Fast Selective Detection of Pyocyanin Using Cyclic Voltammetry. Alatraktchi FA; Andersen SB; Johansen HK; Molin S; Svendsen WE Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 27007376 [TBL] [Abstract][Full Text] [Related]
8. Electrochemical sensing of biomarker for diagnostics of bacteria-specific infections. Alatraktchi FA; Johansen HK; Molin S; Svendsen WE Nanomedicine (Lond); 2016 Aug; 11(16):2185-95. PubMed ID: 27464037 [TBL] [Abstract][Full Text] [Related]
9. N-Doped Reduced Graphene Oxide/Gold Nanoparticles Composite as an Improved Sensing Platform for Simultaneous Detection of Dopamine, Ascorbic Acid, and Uric Acid. Minta D; González Z; Wiench P; Gryglewicz S; Gryglewicz G Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32784787 [TBL] [Abstract][Full Text] [Related]
10. Amplification of electrochemical signal by a whole-cell redox reactivation module for ultrasensitive detection of pyocyanin. Yang Y; Yu YY; Wang YZ; Zhang CL; Wang JX; Fang Z; Lv H; Zhong JJ; Yong YC Biosens Bioelectron; 2017 Dec; 98():338-344. PubMed ID: 28709085 [TBL] [Abstract][Full Text] [Related]
11. Construction of a glucose sensor based on a screen-printed electrode and a novel mediator pyocyanin from Pseudomonas aeruginosa. Ohfuji K; Sato N; Hamada-Sato N; Kobayashi T; Imada C; Okuma H; Watanabe E Biosens Bioelectron; 2004 May; 19(10):1237-44. PubMed ID: 15046755 [TBL] [Abstract][Full Text] [Related]
12. DNA-functionalized carbon quantum dots for electrochemical detection of pyocyanin: A quorum sensing molecule in Pseudomonas aeruginosa. Thulasinathan B; D S; Murugan S; Panda SK; Veerapandian M; Manickam P Biosens Bioelectron; 2023 May; 227():115156. PubMed ID: 36842368 [TBL] [Abstract][Full Text] [Related]
13. Thermal Pyocyanin Sensor Based on Molecularly Imprinted Polymers for the Indirect Detection of Frigoli M; Lowdon JW; Caldara M; Arreguin-Campos R; Sewall J; Cleij TJ; Diliën H; Eersels K; van Grinsven B ACS Sens; 2023 Jan; 8(1):353-362. PubMed ID: 36599088 [No Abstract] [Full Text] [Related]
14. Development of Novel Surface-Enhanced Raman Spectroscopy-Based Biosensors by Controlling the Roughness of Gold/Alumina Platforms for Highly Sensitive Detection of Pyocyanin Secreted from El-Said WA; Saleh TS; Al-Bogami AS; Wani MY; Choi JW Biosensors (Basel); 2024 Aug; 14(8):. PubMed ID: 39194628 [TBL] [Abstract][Full Text] [Related]
15. D-mannitol sensor based on molecularly imprinted polymer on electrode modified with reduced graphene oxide decorated with gold nanoparticles. Beluomini MA; da Silva JL; Sedenho GC; Stradiotto NR Talanta; 2017 Apr; 165():231-239. PubMed ID: 28153247 [TBL] [Abstract][Full Text] [Related]
16. Electrochemical sensors for identifying pyocyanin production in clinical Pseudomonas aeruginosa isolates. Sismaet HJ; Pinto AJ; Goluch ED Biosens Bioelectron; 2017 Nov; 97():65-69. PubMed ID: 28570940 [TBL] [Abstract][Full Text] [Related]
17. Ultra-sensitive electrochemical detection of oxidative stress biomarker 8-hydroxy-2'-deoxyguanosine with poly (L-arginine)/graphene wrapped Au nanoparticles modified electrode. Khan MZH; Liu X; Tang Y; Liu X Biosens Bioelectron; 2018 Oct; 117():508-514. PubMed ID: 29982121 [TBL] [Abstract][Full Text] [Related]
18. Immobilizing gold nanoparticles in mesoporous silica covered reduced graphene oxide: a hybrid material for cancer cell detection through hydrogen peroxide sensing. Maji SK; Sreejith S; Mandal AK; Ma X; Zhao Y ACS Appl Mater Interfaces; 2014 Aug; 6(16):13648-56. PubMed ID: 25046127 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical detection of dopamine with negligible interference from ascorbic and uric acid by means of reduced graphene oxide and metals-NPs based electrodes. Patella B; Sortino A; Mazzara F; Aiello G; Drago G; Torino C; Vilasi A; O'Riordan A; Inguanta R Anal Chim Acta; 2021 Dec; 1187():339124. PubMed ID: 34753568 [TBL] [Abstract][Full Text] [Related]
20. Main Metabolites of Schneider S; Ettenauer J; Pap IJ; Aspöck C; Walochnik J; Brandl M Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808191 [No Abstract] [Full Text] [Related] [Next] [New Search]