BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 33545822)

  • 1. Hyperthermia treatment of cancer cells by the application of targeted silk/iron oxide composite spheres.
    Kucharczyk K; Kaczmarek K; Jozefczak A; Slachcinski M; Mackiewicz A; Dams-Kozlowska H
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111654. PubMed ID: 33545822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composite spheres made of bioengineered spider silk and iron oxide nanoparticles for theranostics applications.
    Kucharczyk K; Rybka JD; Hilgendorff M; Krupinski M; Slachcinski M; Mackiewicz A; Giersig M; Dams-Kozlowska H
    PLoS One; 2019; 14(7):e0219790. PubMed ID: 31306458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug affinity and targeted delivery: double functionalization of silk spheres for controlled doxorubicin delivery into Her2-positive cancer cells.
    Kucharczyk K; Florczak A; Deptuch T; Penderecka K; Jastrzebska K; Mackiewicz A; Dams-Kozlowska H
    J Nanobiotechnology; 2020 Mar; 18(1):56. PubMed ID: 32228620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blending two bioengineered spider silks to develop cancer targeting spheres.
    Florczak A; Jastrzebska K; Mackiewicz A; Dams-Kozlowska H
    J Mater Chem B; 2017 Apr; 5(16):3000-3011. PubMed ID: 32263992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionalized spider silk spheres as drug carriers for targeted cancer therapy.
    Florczak A; Mackiewicz A; Dams-Kozlowska H
    Biomacromolecules; 2014 Aug; 15(8):2971-81. PubMed ID: 24963985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternating magnetic field-induced hyperthermia increases iron oxide nanoparticle cell association/uptake and flux in blood-brain barrier models.
    Dan M; Bae Y; Pittman TA; Yokel RA
    Pharm Res; 2015 May; 32(5):1615-25. PubMed ID: 25377069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functionalized silk spheres selectively and effectively deliver a cytotoxic drug to targeted cancer cells in vivo.
    Florczak A; Deptuch T; Lewandowska A; Penderecka K; Kramer E; Marszalek A; Mackiewicz A; Dams-Kozlowska H
    J Nanobiotechnology; 2020 Dec; 18(1):177. PubMed ID: 33261651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular uptake, intracellular distribution and degradation of Her2-targeting silk nanospheres.
    Florczak A; Mackiewicz A; Dams-Kozlowska H
    Int J Nanomedicine; 2019; 14():6855-6865. PubMed ID: 32021156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo study of the immune response to bioengineered spider silk spheres.
    Deptuch T; Penderecka K; Kaczmarek M; Molenda S; Dams-Kozlowska H
    Sci Rep; 2022 Aug; 12(1):13480. PubMed ID: 35931709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Optimized Iron Oxide Embedded Poly(Lactic Acid) Nanocomposites for Effective Magnetic Hyperthermia and Biosecurity.
    Ryu C; Lee H; Kim H; Hwang S; Hadadian Y; Mohanty A; Park IK; Cho B; Yoon J; Lee JY
    Int J Nanomedicine; 2022; 17():31-44. PubMed ID: 35023918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functionalized bioengineered spider silk spheres improve nuclease resistance and activity of oligonucleotide therapeutics providing a strategy for cancer treatment.
    Kozlowska AK; Florczak A; Smialek M; Dondajewska E; Mackiewicz A; Kortylewski M; Dams-Kozlowska H
    Acta Biomater; 2017 Sep; 59():221-233. PubMed ID: 28694238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of spider silk sphere formation processing conditions to obtain carriers with controlled characteristics.
    Florczak A; Jastrzebska K; Bialas W; Mackiewicz A; Dams-Kozlowska H
    J Biomed Mater Res A; 2018 Dec; 106(12):3211-3221. PubMed ID: 30242958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of CREKA-conjugated iron oxide nanoparticles for hyperthermia applications.
    Kruse AM; Meenach SA; Anderson KW; Hilt JZ
    Acta Biomater; 2014 Jun; 10(6):2622-9. PubMed ID: 24486913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioengineering the spider silk sequence to modify its affinity for drugs.
    Kucharczyk K; Weiss M; Jastrzebska K; Luczak M; Ptak A; Kozak M; Mackiewicz A; Dams-Kozlowska H
    Int J Nanomedicine; 2018; 13():4247-4261. PubMed ID: 30050299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MMPs-responsive silk spheres for controlled drug release within tumor microenvironment.
    Kucharczyk K; Florczak A; Kaminska A; Guzniczak N; Sikorska A; Deptuch T; Dams-Kozlowska H
    Int J Biol Macromol; 2024 Jun; 269(Pt 1):132016. PubMed ID: 38697442
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Ognjanović M; Radović M; Mirković M; Prijović Ž; Puerto Morales MD; Čeh M; Vranješ-Đurić S; Antić B
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41109-41117. PubMed ID: 31610125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold-coated magnetic nanoparticle as a nanotheranostic agent for magnetic resonance imaging and photothermal therapy of cancer.
    Eyvazzadeh N; Shakeri-Zadeh A; Fekrazad R; Amini E; Ghaznavi H; Kamran Kamrava S
    Lasers Med Sci; 2017 Sep; 32(7):1469-1477. PubMed ID: 28674789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folic acid on iron oxide nanoparticles: platform with high potential for simultaneous targeting, MRI detection and hyperthermia treatment of lymph node metastases of prostate cancer.
    Bonvin D; Bastiaansen JAM; Stuber M; Hofmann H; Mionić Ebersold M
    Dalton Trans; 2017 Sep; 46(37):12692-12704. PubMed ID: 28914298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic targeting combined with active targeting of dual-ligand iron oxide nanoprobes to promote the penetration depth in tumors for effective magnetic resonance imaging and hyperthermia.
    Chen L; Wu Y; Wu H; Li J; Xie J; Zang F; Ma M; Gu N; Zhang Y
    Acta Biomater; 2019 Sep; 96():491-504. PubMed ID: 31302299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-pot preparation of hyaluronic acid-coated iron oxide nanoparticles for magnetic hyperthermia therapy and targeting CD44-overexpressing cancer cells.
    Soleymani M; Velashjerdi M; Shaterabadi Z; Barati A
    Carbohydr Polym; 2020 Jun; 237():116130. PubMed ID: 32241421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.