These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33545895)

  • 1. Open cell polyurethane foam compression failure characterization and its relationship to morphometry.
    Belda R; Palomar M; Marco M; Vercher-Martínez A; Giner E
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111754. PubMed ID: 33545895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compressive properties of commercially available polyurethane foams as mechanical models for osteoporotic human cancellous bone.
    Patel PS; Shepherd DE; Hukins DW
    BMC Musculoskelet Disord; 2008 Oct; 9():137. PubMed ID: 18844988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical and morphometric characterization of custom-made trabecular bone surrogates.
    Klinger S; Greinwald M; Augat P; Hollensteiner M
    J Mech Behav Biomed Mater; 2022 May; 129():105146. PubMed ID: 35247861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compressive behaviour of bovine cancellous bone and bone analogous materials, microCT characterisation and FE analysis.
    Guillén T; Zhang QH; Tozzi G; Ohrndorf A; Christ HJ; Tong J
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1452-61. PubMed ID: 21783155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparisons of Anterior Plate Screw Pullout Strength Between Polyurethane Foams and Thoracolumbar Cadaveric Vertebrae.
    Nagaraja S; Palepu V
    J Biomech Eng; 2016 Oct; 138(10):. PubMed ID: 27536905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Post-corrosion mechanical properties of absorbable open cell iron foams with hollow struts.
    Alavi R; Akbarzadeh AH; Hermawan H
    J Mech Behav Biomed Mater; 2021 May; 117():104413. PubMed ID: 33640846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical evaluation of calcium phosphate-based nanocomposite versus polymethylmethacrylate cement for percutaneous kyphoplasty.
    Lu Q; Liu C; Wang D; Liu H; Yang H; Yang L
    Spine J; 2019 Nov; 19(11):1871-1884. PubMed ID: 31202837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling cement augmentation: a comparative experimental and finite element study at the continuum level.
    Zhao Y; Jin ZM; Wilcox RK
    Proc Inst Mech Eng H; 2010; 224(7):903-11. PubMed ID: 20839657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trabecular level analysis of bone cement augmentation: a comparative experimental and finite element study.
    Zhao Y; Robson Brown KA; Jin ZM; Wilcox RK
    Ann Biomed Eng; 2012 Oct; 40(10):2168-76. PubMed ID: 22648574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid and reliable biomechanical screening of injectable bone cements for autonomous augmentation of osteoporotic vertebral bodies: appropriate values of elastic constants for finite element models.
    Lewis G; Xu J
    J Biomed Mater Res B Appl Biomater; 2007 Aug; 82(2):408-17. PubMed ID: 17245745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphometric Analysis of One-Component Polyurethane Foams Applicable in the Building Sector via X-ray Computed Microtomography.
    Blazejczyk A
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30217098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gamma-irradiation-induced micro-structural variations in flame-retardant polyurethane foam using synchrotron X-ray micro-tomography.
    Agrawal AK; Singh B; Kashyap YS; Shukla M; Manjunath BS; Gadkari SC
    J Synchrotron Radiat; 2019 Sep; 26(Pt 5):1797-1807. PubMed ID: 31490172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reinforcement of osteosynthesis screws with brushite cement.
    Van Landuyt P; Peter B; Beluze L; Lemaître J
    Bone; 1999 Aug; 25(2 Suppl):95S-98S. PubMed ID: 10458285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of commercial rigid polyurethane foams used as bone analogs for implant testing.
    Calvert KL; Trumble KP; Webster TJ; Kirkpatrick LA
    J Mater Sci Mater Med; 2010 May; 21(5):1453-61. PubMed ID: 20162325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Some Practical Considerations for Compression Failure Characterization of Open-Cell Polyurethane Foams Using Digital Image Correlation.
    Belda R; Megías R; Feito N; Vercher-Martínez A; Giner E
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32722419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large Deformation Finite Element Analyses for 3D X-ray CT Scanned Microscopic Structures of Polyurethane Foams.
    Iizuka M; Goto R; Siegkas P; Simpson B; Mansfield N
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33671456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of open-cell polyurethane-based bone surrogates for biomechanical testing of pedicle screws.
    Hollensteiner M; Esterer B; Fürst D; Schrempf A; Augat P
    J Mech Behav Biomed Mater; 2019 Sep; 97():247-253. PubMed ID: 31132661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compressive and shear properties of commercially available polyurethane foams.
    Thompson MS; McCarthy ID; Lidgren L; Ryd L
    J Biomech Eng; 2003 Oct; 125(5):732-4. PubMed ID: 14618933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radius fracture repair using volumetrically expanding polyurethane bone cement.
    Boxberger JI; Adams DJ; Diaz-Doran V; Akkarapaka NB; Kolb ED
    J Hand Surg Am; 2011 Aug; 36(8):1294-302. PubMed ID: 21715102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metallic open-cell foams--a promising approach to fabricating good medical implants.
    Ohrndorf A; Krupp U; Christ HJ
    Technol Health Care; 2006; 14(4-5):201-8. PubMed ID: 17065742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.