These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33545906)

  • 1. Biomineralization inspired engineering of nanobiomaterials promoting bone repair.
    Oliveira FC; Carvalho JO; Magalhães LSSM; da Silva JM; Pereira SR; Gomes Júnior AL; Soares LM; Cariman LIC; da Silva RI; Viana BC; Silva-Filho EC; Afewerki S; da Cunha HN; Vega ML; Marciano FR; Lobo AO
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111776. PubMed ID: 33545906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrospun polycaprolactone/hydroxyapatite/ZnO nanofibers as potential biomaterials for bone tissue regeneration.
    Shitole AA; Raut PW; Sharma N; Giram P; Khandwekar AP; Garnaik B
    J Mater Sci Mater Med; 2019 Apr; 30(5):51. PubMed ID: 31011810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High loads of nano-hydroxyapatite/graphene nanoribbon composites guided bone regeneration using an osteoporotic animal model.
    Oliveira FC; Carvalho JO; Gusmão SBS; Gonçalves LS; Soares Mendes LM; Freitas SAP; Gusmão GOM; Viana BC; Marciano FR; Lobo AO
    Int J Nanomedicine; 2019; 14():865-874. PubMed ID: 30774339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Vitro and in Vivo Studies of Novel Poly(D,L-lactic acid), Superhydrophilic Carbon Nanotubes, and Nanohydroxyapatite Scaffolds for Bone Regeneration.
    Siqueira IA; Corat MA; Cavalcanti Bd; Ribeiro Neto WA; Martin AA; Bretas RE; Marciano FR; Lobo AO
    ACS Appl Mater Interfaces; 2015 May; 7(18):9385-98. PubMed ID: 25899398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro osteogenesis process induced by hybrid nanohydroxyapatite/graphene nanoribbons composites.
    de Vasconcellos LMR; do Prado RF; Sartori EM; Mendonça DBS; Mendonça G; Marciano FR; Lobo AO
    J Mater Sci Mater Med; 2019 Jun; 30(7):81. PubMed ID: 31254104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycol chitosan/nanohydroxyapatite biocomposites for potential bone tissue engineering and regenerative medicine.
    Dumont VC; Mansur HS; Mansur AA; Carvalho SM; Capanema NS; Barrioni BR
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1465-1478. PubMed ID: 27086294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Air jet spinning of hydroxyapatite/poly(lactic acid) hybrid nanocomposite membrane mats for bone tissue engineering.
    Abdal-hay A; Sheikh FA; Lim JK
    Colloids Surf B Biointerfaces; 2013 Feb; 102():635-43. PubMed ID: 23107942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanohydroxyapatite/Graphene Nanoribbons Nanocomposites Induce in Vitro Osteogenesis and Promote in Vivo Bone Neoformation.
    S Medeiros J; Oliveira AM; Carvalho JO; Ricci R; Martins MDCC; Rodrigues BVM; Webster TJ; Viana BC; Vasconcellos LMR; Canevari RA; Marciano FR; Lobo AO
    ACS Biomater Sci Eng; 2018 May; 4(5):1580-1590. PubMed ID: 33445315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of Large-scale Defects with a Novel Hybrid Scaffold Made from Poly(L-lactic acid)/Nanohydroxyapatite/Alendronate-loaded Chitosan Microsphere: in vitro and in vivo Studies.
    Wu H; Lei P; Liu G; Shrike Zhang Y; Yang J; Zhang L; Xie J; Niu W; Liu H; Ruan J; Hu Y; Zhang C
    Sci Rep; 2017 Mar; 7(1):359. PubMed ID: 28337023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration.
    Bharadwaz A; Jayasuriya AC
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110698. PubMed ID: 32204012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid) Microsphere-Based Composite Scaffolds on Repair of Bone Defects: Evaluating the Role of Nano-hydroxyapatite Content.
    He S; Lin KF; Sun Z; Song Y; Zhao YN; Wang Z; Bi L; Liu J
    Artif Organs; 2016 Jul; 40(7):E128-35. PubMed ID: 27378617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of Graphene-Hydroxyapatite Nanocomposites for Potential Use in Bone Tissue Engineering.
    Ghosh S; Bhagwat T; Kitture R; Thongmee S; Webster TJ
    J Vis Exp; 2022 Jul; (185):. PubMed ID: 35969088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid chitosan/gelatin/nanohydroxyapatite scaffolds promote odontogenic differentiation of dental pulp stem cells and in vitro biomineralization.
    Vagropoulou G; Trentsiou M; Georgopoulou A; Papachristou E; Prymak O; Kritis A; Epple M; Chatzinikolaidou M; Bakopoulou A; Koidis P
    Dent Mater; 2021 Jan; 37(1):e23-e36. PubMed ID: 33208264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteogenic Differentiation of MSCs on Fibronectin-Coated and nHA-Modified Scaffolds.
    Mohamadyar-Toupkanlou F; Vasheghani-Farahani E; Hanaee-Ahvaz H; Soleimani M; Dodel M; Havasi P; Ardeshirylajimi A; Taherzadeh ES
    ASAIO J; 2017; 63(5):684-691. PubMed ID: 28234642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Electrospun Polylactic Acid Nanocomposite Fiber Mats with Hybrid Graphene Oxide and Nanohydroxyapatite Reinforcements Having Enhanced Biocompatibility.
    Liu C; Wong HM; Yeung KWK; Tjong SC
    Polymers (Basel); 2016 Aug; 8(8):. PubMed ID: 30974562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene oxide nanoribbons as nanomaterial for bone regeneration: Effects on cytotoxicity, gene expression and bactericidal effect.
    Ricci R; Leite NCS; da-Silva NS; Pacheco-Soares C; Canevari RA; Marciano FR; Webster TJ; Lobo AO
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():341-348. PubMed ID: 28575993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon Nanomaterials for Treating Osteoporotic Vertebral Fractures.
    de Carvalho JO; de Carvalho Oliveira F; Freitas SAP; Soares LM; de Cássia Barros Lima R; de Sousa Gonçalves L; Webster TJ; Marciano FR; Lobo AO
    Curr Osteoporos Rep; 2018 Oct; 16(5):626-634. PubMed ID: 30203250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration.
    Chen X; Gao C; Jiang J; Wu Y; Zhu P; Chen G
    Biomed Mater; 2019 Sep; 14(6):065003. PubMed ID: 31382255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and in-vitro biocompatibility of freeze-dried CTS-nHA and CTS-nBG scaffolds for bone regeneration applications.
    Kumar P; Saini M; Dehiya BS; Umar A; Sindhu A; Mohammed H; Al-Hadeethi Y; Guo Z
    Int J Biol Macromol; 2020 Apr; 149():1-10. PubMed ID: 31923516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Healing potential of nanohydroxyapatite, gelatin, and fibrin-platelet glue combination as tissue engineered scaffolds in radial bone defects of rats.
    Meimandi-Parizi A; Oryan A; Gholipour H
    Connect Tissue Res; 2018 Jul; 59(4):332-344. PubMed ID: 29035127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.