These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 33546320)

  • 1. Transcriptome Analysis of the Fruit of Two Strawberry Cultivars "Sunnyberry" and "Kingsberry" That Show Different Susceptibility to
    Lee K; Lee JG; Min K; Choi JH; Lim S; Lee EJ
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33546320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Independent Preharvest Applications of Methyl Jasmonate and Chitosan Elicit Differential Upregulation of Defense-Related Genes with Reduced Incidence of Gray Mold Decay during Postharvest Storage of Fragaria chiloensis Fruit.
    Saavedra GM; Sanfuentes E; Figueroa PM; Figueroa CR
    Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28671619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative transcriptome and metabolome analyses of two strawberry cultivars with different storability.
    Min K; Yi G; Lee JG; Kim HS; Hong Y; Choi JH; Lim S; Lee EJ
    PLoS One; 2020; 15(12):e0242556. PubMed ID: 33264316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic prediction of strawberry resistance to postharvest fruit decay caused by the fungal pathogen Botrytis cinerea.
    Petrasch S; Mesquida-Pesci SD; Pincot DDA; Feldmann MJ; López CM; Famula R; Hardigan MA; Cole GS; Knapp SJ; Blanco-Ulate B
    G3 (Bethesda); 2022 Jan; 12(1):. PubMed ID: 34791166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Botrytis fragariae, a New Species Causing Gray Mold on Strawberries, Shows High Frequencies of Specific and Efflux-Based Fungicide Resistance.
    Rupp S; Plesken C; Rumsey S; Dowling M; Schnabel G; Weber RWS; Hahn M
    Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28235878
    [No Abstract]   [Full Text] [Related]  

  • 6. Chitosan induces jasmonic acid production leading to resistance of ripened fruit against Botrytis cinerea infection.
    Peian Z; Haifeng J; Peijie G; Sadeghnezhad E; Qianqian P; Tianyu D; Teng L; Huanchun J; Jinggui F
    Food Chem; 2021 Feb; 337():127772. PubMed ID: 32777571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative RNA-Seq analysis reveals a critical role for brassinosteroids in rose (Rosa hybrida) petal defense against Botrytis cinerea infection.
    Liu X; Cao X; Shi S; Zhao N; Li D; Fang P; Chen X; Qi W; Zhang Z
    BMC Genet; 2018 Aug; 19(1):62. PubMed ID: 30126371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hanseniaspora uvarum prolongs shelf life of strawberry via volatile production.
    Qin X; Xiao H; Cheng X; Zhou H; Si L
    Food Microbiol; 2017 May; 63():205-212. PubMed ID: 28040170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome Profiles of Strawberry (
    Haile ZM; Nagpala-De Guzman EG; Moretto M; Sonego P; Engelen K; Zoli L; Moser C; Baraldi E
    Front Plant Sci; 2019; 10():1131. PubMed ID: 31620156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea.
    Petrasch S; Knapp SJ; van Kan JAL; Blanco-Ulate B
    Mol Plant Pathol; 2019 Jun; 20(6):877-892. PubMed ID: 30945788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocontrol of strawberry Botrytis gray mold and prolong the fruit shelf-life by fumigant Trichoderma spp.
    Fan QS; Lin HJ; Hu YJ; Jin J; Yan HH; Zhang RQ
    Biotechnol Lett; 2024 Oct; 46(5):751-766. PubMed ID: 38811460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyphenols Variation in Fruits of the Susceptible Strawberry Cultivar Alba during Ripening and upon Fungal Pathogen Interaction and Possible Involvement in Unripe Fruit Tolerance.
    Nagpala EG; Guidarelli M; Gasperotti M; Masuero D; Bertolini P; Vrhovsek U; Baraldi E
    J Agric Food Chem; 2016 Mar; 64(9):1869-78. PubMed ID: 26895094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dark Period Following UV-C Treatment Enhances Killing of Botrytis cinerea Conidia and Controls Gray Mold of Strawberries.
    Janisiewicz WJ; Takeda F; Glenn DM; Camp MJ; Jurick WM
    Phytopathology; 2016 Apr; 106(4):386-94. PubMed ID: 26714103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deciphering the Molecular Signatures Associated With Resistance to
    Xiao G; Zhang Q; Zeng X; Chen X; Liu S; Han Y
    Front Plant Sci; 2022; 13():888939. PubMed ID: 35720571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Botrytis cinerea differentially induces postharvest antioxidant responses in 'Braeburn' and 'Golden Delicious' apple fruit.
    Bui TT; Wright SA; Falk AB; Vanwalleghem T; Van Hemelrijck W; Hertog ML; Keulemans J; Davey MW
    J Sci Food Agric; 2019 Oct; 99(13):5662-5670. PubMed ID: 31150567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA interference-based strategies to control Botrytis cinerea infection in cultivated strawberry.
    Capriotti L; Molesini B; Pandolfini T; Jin H; Baraldi E; Cecchin M; Mezzetti B; Sabbadini S
    Plant Cell Rep; 2024 Jul; 43(8):201. PubMed ID: 39048858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiency of nanoemulsion of essential oils to control Botrytis cinerea on strawberry surface and prolong fruit shelf life.
    Javanmardi Z; Koushesh Saba M; Nourbakhsh H; Amini J
    Int J Food Microbiol; 2023 Jan; 384():109979. PubMed ID: 36260958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soft mechanical stimulation induces a defense response against Botrytis cinerea in strawberry.
    Tomas-Grau RH; Requena-Serra FJ; Hael-Conrad V; Martínez-Zamora MG; Guerrero-Molina MF; Díaz-Ricci JC
    Plant Cell Rep; 2018 Feb; 37(2):239-250. PubMed ID: 29032427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early detection of Botrytis cinerea in strawberry fruit during quiescent infection using selected ion flow tube mass spectrometry (SIFT-MS).
    Zhao Y; De Coninck B; Ribeiro B; Nicolaï B; Hertog M
    Int J Food Microbiol; 2023 Oct; 402():110313. PubMed ID: 37421873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the Molecular Dialogue Between Gray Mold (Botrytis cinerea) and Grapevine (Vitis vinifera) Reveals a Clear Shift in Defense Mechanisms During Berry Ripening.
    Kelloniemi J; Trouvelot S; Héloir MC; Simon A; Dalmais B; Frettinger P; Cimerman A; Fermaud M; Roudet J; Baulande S; Bruel C; Choquer M; Couvelard L; Duthieuw M; Ferrarini A; Flors V; Le Pêcheur P; Loisel E; Morgant G; Poussereau N; Pradier JM; Rascle C; Trdá L; Poinssot B; Viaud M
    Mol Plant Microbe Interact; 2015 Nov; 28(11):1167-80. PubMed ID: 26267356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.