These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 33546379)

  • 21. Contribution of plastic and microplastic to global climate change and their conjoining impacts on the environment - A review.
    Sharma S; Sharma V; Chatterjee S
    Sci Total Environ; 2023 Jun; 875():162627. PubMed ID: 36889403
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cradle-to-Gate and Use-Phase Carbon Footprint of a Commercial Plug-in Hybrid Electric Vehicle Lithium-Ion Battery.
    Kim HC; Lee S; Wallington TJ
    Environ Sci Technol; 2023 Aug; 57(32):11834-11842. PubMed ID: 37515579
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Life cycle assessment of energy consumption and greenhouse gas emissions of cellulosic ethanol from corn stover].
    Tian W; Liao C; Li L; Zhao D
    Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):516-25. PubMed ID: 21650036
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent Advances in Sustainable Plastic Upcycling and Biopolymers.
    Sohn YJ; Kim HT; Baritugo KA; Jo SY; Song HM; Park SY; Park SK; Pyo J; Cha HG; Kim H; Na JG; Park C; Choi JI; Joo JC; Park SJ
    Biotechnol J; 2020 Jun; 15(6):e1900489. PubMed ID: 32162832
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Life cycle assessment of bagasse fiber reinforced biocomposites.
    Ita-Nagy D; Vázquez-Rowe I; Kahhat R; Quispe I; Chinga-Carrasco G; Clauser NM; Area MC
    Sci Total Environ; 2020 Jun; 720():137586. PubMed ID: 32325583
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Life Cycle Assessment and Costing Methods for Device Procurement: Comparing Reusable and Single-Use Disposable Laryngoscopes.
    Sherman JD; Raibley LA; Eckelman MJ
    Anesth Analg; 2018 Aug; 127(2):434-443. PubMed ID: 29324492
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Degradation of Cellulose Derivatives in Laboratory, Man-Made, and Natural Environments.
    Erdal NB; Hakkarainen M
    Biomacromolecules; 2022 Jul; 23(7):2713-2729. PubMed ID: 35763720
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The impact of changing toward higher welfare broiler production systems on greenhouse gas emissions: a Dutch case study using life cycle assessment.
    Mostert PF; Bos AP; van Harn J; de Jong IC
    Poult Sci; 2022 Dec; 101(12):102151. PubMed ID: 36279609
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polydiketoenamines for a Circular Plastics Economy.
    Helms BA
    Acc Chem Res; 2022 Oct; 55(19):2753-2765. PubMed ID: 36108255
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Life cycle assessment of cellulose nanofibrils production by mechanical treatment and two different pretreatment processes.
    Arvidsson R; Nguyen D; Svanström M
    Environ Sci Technol; 2015 Jun; 49(11):6881-90. PubMed ID: 25938258
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Environmental sustainability assessment of biodegradable bio-based poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from agro-residues: Production and end-of-life scenarios.
    Nhu TT; Boone L; Guillard V; Chatellard L; Reis M; Matos M; Dewulf J
    J Environ Manage; 2024 Apr; 356():120522. PubMed ID: 38493645
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of Product Carbon Footprint Protocols: Case Study on Medium-Density Fiberboard in China.
    Wang S; Wang W; Yang H
    Int J Environ Res Public Health; 2018 Sep; 15(10):. PubMed ID: 30241296
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Cradle-to-Cradle Life Cycle Assessment of Polyethylene terephthalate: Environmental Perspective.
    Tamoor M; Samak NA; Yang M; Xing J
    Molecules; 2022 Feb; 27(5):. PubMed ID: 35268703
    [TBL] [Abstract][Full Text] [Related]  

  • 34. From trash to treasure: Sourcing high-value, sustainable cellulosic materials from living bioreactor waste streams.
    Harrison TR; Gupta VK; Alam P; Perriman AW; Scarpa F; Thakur VK
    Int J Biol Macromol; 2023 Apr; 233():123511. PubMed ID: 36773882
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Technological limitations in obtaining and using cellulose biocomposites.
    Masek A; Kosmalska A
    Front Bioeng Biotechnol; 2022; 10():912052. PubMed ID: 36061440
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon footprint as an environmental sustainability indicator for the particleboard produced in Pakistan.
    Hussain M; Naseem Malik R; Taylor A
    Environ Res; 2017 May; 155():385-393. PubMed ID: 28288441
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Climate Change Implications of Bio-Based and Marine-Biodegradable Plastic: Evidence from Poly(3-hydroxybutyrate-
    Amasawa E; Yamanishi T; Nakatani J; Hirao M; Sato S
    Environ Sci Technol; 2021 Mar; 55(5):3380-3388. PubMed ID: 33586971
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plastics to fuel or plastics: Life cycle assessment-based evaluation of different options for pyrolysis at end-of-life.
    Das S; Liang C; Dunn JB
    Waste Manag; 2022 Nov; 153():81-88. PubMed ID: 36055178
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation).
    Bogner J; Pipatti R; Hashimoto S; Diaz C; Mareckova K; Diaz L; Kjeldsen P; Monni S; Faaij A; Gao Q; Zhang T; Ahmed MA; Sutamihardja RT; Gregory R;
    Waste Manag Res; 2008 Feb; 26(1):11-32. PubMed ID: 18338699
    [TBL] [Abstract][Full Text] [Related]  

  • 40. State of Art Manufacturing and Producing Nanocellulose from Agricultural Waste: A Review.
    Kaur M; Sharma P; Kumari S
    J Nanosci Nanotechnol; 2021 Jun; 21(6):3394-3403. PubMed ID: 34739796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.