These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 33546412)
1. Fusion of Deep Convolutional Neural Networks for No-Reference Magnetic Resonance Image Quality Assessment. Stępień I; Obuchowicz R; Piórkowski A; Oszust M Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33546412 [TBL] [Abstract][Full Text] [Related]
2. No-reference image quality assessment of magnetic resonance images with high-boost filtering and local features. Oszust M; Piórkowski A; Obuchowicz R Magn Reson Med; 2020 Sep; 84(3):1648-1660. PubMed ID: 32052485 [TBL] [Abstract][Full Text] [Related]
3. MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks. Zhang Q; Ruan G; Yang W; Liu Y; Zhao K; Feng Q; Chen W; Wu EX; Feng Y Magn Reson Med; 2019 Dec; 82(6):2133-2145. PubMed ID: 31373061 [TBL] [Abstract][Full Text] [Related]
4. MR-based synthetic CT generation using a deep convolutional neural network method. Han X Med Phys; 2017 Apr; 44(4):1408-1419. PubMed ID: 28192624 [TBL] [Abstract][Full Text] [Related]
5. No-reference quality assessment for image-based assessment of economically important tropical woods. Rajagopal H; Mokhtar N; Tengku Mohmed Noor Izam TF; Wan Ahmad WK PLoS One; 2020; 15(5):e0233320. PubMed ID: 32428043 [TBL] [Abstract][Full Text] [Related]
6. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging. Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353 [TBL] [Abstract][Full Text] [Related]
8. Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review. Bernal J; Kushibar K; Asfaw DS; Valverde S; Oliver A; Martí R; Lladó X Artif Intell Med; 2019 Apr; 95():64-81. PubMed ID: 30195984 [TBL] [Abstract][Full Text] [Related]
9. Learning deep similarity metric for 3D MR-TRUS image registration. Haskins G; Kruecker J; Kruger U; Xu S; Pinto PA; Wood BJ; Yan P Int J Comput Assist Radiol Surg; 2019 Mar; 14(3):417-425. PubMed ID: 30382457 [TBL] [Abstract][Full Text] [Related]
10. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images. Tong N; Gou S; Yang S; Cao M; Sheng K Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188 [TBL] [Abstract][Full Text] [Related]
11. Grading of hepatocellular carcinoma based on diffusion weighted images with multiple b-values using convolutional neural networks. Zhou W; Wang G; Xie G; Zhang L Med Phys; 2019 Sep; 46(9):3951-3960. PubMed ID: 31169907 [TBL] [Abstract][Full Text] [Related]
12. Are Convolutional Neural Networks Trained on ImageNet Images Wearing Rose-Colored Glasses?: A Quantitative Comparison of ImageNet, Computed Tomographic, Magnetic Resonance, Chest X-Ray, and Point-of-Care Ultrasound Images for Quality. Blaivas L; Blaivas M J Ultrasound Med; 2021 Feb; 40(2):377-383. PubMed ID: 32757235 [TBL] [Abstract][Full Text] [Related]
13. DENSE-INception U-net for medical image segmentation. Zhang Z; Wu C; Coleman S; Kerr D Comput Methods Programs Biomed; 2020 Aug; 192():105395. PubMed ID: 32163817 [TBL] [Abstract][Full Text] [Related]
14. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs. Tang F; Liang S; Zhong T; Huang X; Deng X; Zhang Y; Zhou L Eur Radiol; 2020 Feb; 30(2):823-832. PubMed ID: 31650265 [TBL] [Abstract][Full Text] [Related]
15. Denoising of magnetic resonance images using discriminative learning-based deep convolutional neural network. Tripathi S; Sharma N Technol Health Care; 2022; 30(1):145-160. PubMed ID: 34024795 [TBL] [Abstract][Full Text] [Related]
16. No-Reference Image Quality Assessment with Multi-Scale Orderless Pooling of Deep Features. Varga D J Imaging; 2021 Jul; 7(7):. PubMed ID: 39080900 [TBL] [Abstract][Full Text] [Related]
17. Evaluating medical images using deep convolutional neural networks: A simulated CT phantom image study. Hayashi N; Maruyama T; Sato Y; Watanabe H; Ogura T; Ogura A Technol Health Care; 2020; 28(2):113-120. PubMed ID: 31156187 [TBL] [Abstract][Full Text] [Related]
18. No-Reference Video Quality Assessment Using Multi-Pooled, Saliency Weighted Deep Features and Decision Fusion. Varga D Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336380 [TBL] [Abstract][Full Text] [Related]
19. A machine-learning framework for automatic reference-free quality assessment in MRI. Küstner T; Gatidis S; Liebgott A; Schwartz M; Mauch L; Martirosian P; Schmidt H; Schwenzer NF; Nikolaou K; Bamberg F; Yang B; Schick F Magn Reson Imaging; 2018 Nov; 53():134-147. PubMed ID: 30036653 [TBL] [Abstract][Full Text] [Related]
20. Automatic diagnosis of fungal keratitis using data augmentation and image fusion with deep convolutional neural network. Liu Z; Cao Y; Li Y; Xiao X; Qiu Q; Yang M; Zhao Y; Cui L Comput Methods Programs Biomed; 2020 Apr; 187():105019. PubMed ID: 31421868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]