BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 33546412)

  • 1. Fusion of Deep Convolutional Neural Networks for No-Reference Magnetic Resonance Image Quality Assessment.
    Stępień I; Obuchowicz R; Piórkowski A; Oszust M
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33546412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. No-reference image quality assessment of magnetic resonance images with high-boost filtering and local features.
    Oszust M; Piórkowski A; Obuchowicz R
    Magn Reson Med; 2020 Sep; 84(3):1648-1660. PubMed ID: 32052485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks.
    Zhang Q; Ruan G; Yang W; Liu Y; Zhao K; Feng Q; Chen W; Wu EX; Feng Y
    Magn Reson Med; 2019 Dec; 82(6):2133-2145. PubMed ID: 31373061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MR-based synthetic CT generation using a deep convolutional neural network method.
    Han X
    Med Phys; 2017 Apr; 44(4):1408-1419. PubMed ID: 28192624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. No-reference quality assessment for image-based assessment of economically important tropical woods.
    Rajagopal H; Mokhtar N; Tengku Mohmed Noor Izam TF; Wan Ahmad WK
    PLoS One; 2020; 15(5):e0233320. PubMed ID: 32428043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Segmenting brain tumors from FLAIR MRI using fully convolutional neural networks.
    Ribalta Lorenzo P; Nalepa J; Bobek-Billewicz B; Wawrzyniak P; Mrukwa G; Kawulok M; Ulrych P; Hayball MP
    Comput Methods Programs Biomed; 2019 Jul; 176():135-148. PubMed ID: 31200901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. No-Reference Video Quality Assessment Using Multi-Pooled, Saliency Weighted Deep Features and Decision Fusion.
    Varga D
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review.
    Bernal J; Kushibar K; Asfaw DS; Valverde S; Oliver A; Martí R; Lladó X
    Artif Intell Med; 2019 Apr; 95():64-81. PubMed ID: 30195984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BIRNet: Brain image registration using dual-supervised fully convolutional networks.
    Fan J; Cao X; Yap PT; Shen D
    Med Image Anal; 2019 May; 54():193-206. PubMed ID: 30939419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning deep similarity metric for 3D MR-TRUS image registration.
    Haskins G; Kruecker J; Kruger U; Xu S; Pinto PA; Wood BJ; Yan P
    Int J Comput Assist Radiol Surg; 2019 Mar; 14(3):417-425. PubMed ID: 30382457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Grading of hepatocellular carcinoma based on diffusion weighted images with multiple b-values using convolutional neural networks.
    Zhou W; Wang G; Xie G; Zhang L
    Med Phys; 2019 Sep; 46(9):3951-3960. PubMed ID: 31169907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are Convolutional Neural Networks Trained on ImageNet Images Wearing Rose-Colored Glasses?: A Quantitative Comparison of ImageNet, Computed Tomographic, Magnetic Resonance, Chest X-Ray, and Point-of-Care Ultrasound Images for Quality.
    Blaivas L; Blaivas M
    J Ultrasound Med; 2021 Feb; 40(2):377-383. PubMed ID: 32757235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DENSE-INception U-net for medical image segmentation.
    Zhang Z; Wu C; Coleman S; Kerr D
    Comput Methods Programs Biomed; 2020 Aug; 192():105395. PubMed ID: 32163817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs.
    Tang F; Liang S; Zhong T; Huang X; Deng X; Zhang Y; Zhou L
    Eur Radiol; 2020 Feb; 30(2):823-832. PubMed ID: 31650265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Denoising of magnetic resonance images using discriminative learning-based deep convolutional neural network.
    Tripathi S; Sharma N
    Technol Health Care; 2022; 30(1):145-160. PubMed ID: 34024795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating medical images using deep convolutional neural networks: A simulated CT phantom image study.
    Hayashi N; Maruyama T; Sato Y; Watanabe H; Ogura T; Ogura A
    Technol Health Care; 2020; 28(2):113-120. PubMed ID: 31156187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A machine-learning framework for automatic reference-free quality assessment in MRI.
    Küstner T; Gatidis S; Liebgott A; Schwartz M; Mauch L; Martirosian P; Schmidt H; Schwenzer NF; Nikolaou K; Bamberg F; Yang B; Schick F
    Magn Reson Imaging; 2018 Nov; 53():134-147. PubMed ID: 30036653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic diagnosis of fungal keratitis using data augmentation and image fusion with deep convolutional neural network.
    Liu Z; Cao Y; Li Y; Xiao X; Qiu Q; Yang M; Zhao Y; Cui L
    Comput Methods Programs Biomed; 2020 Apr; 187():105019. PubMed ID: 31421868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.