These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 33546412)

  • 41. Attention feature fusion methodology with additional constraint for ovarian lesion diagnosis on magnetic resonance images.
    Wang S; Xu X; Du H; Chen Y; Mei W
    Med Phys; 2023 Jan; 50(1):297-310. PubMed ID: 35975618
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Unsupervised learning of a deep neural network for metal artifact correction using dual-polarity readout gradients.
    Kwon K; Kim D; Kim B; Park H
    Magn Reson Med; 2020 Jan; 83(1):124-138. PubMed ID: 31403219
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Statistical Image Restoration for Low-Dose CT using Convolutional Neural Networks
    Choi K; Kim S
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1303-1306. PubMed ID: 33018227
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recognition of peripheral blood cell images using convolutional neural networks.
    Acevedo A; Alférez S; Merino A; Puigví L; Rodellar J
    Comput Methods Programs Biomed; 2019 Oct; 180():105020. PubMed ID: 31425939
    [TBL] [Abstract][Full Text] [Related]  

  • 45. MRI-Based Brain Tumor Classification Using Ensemble of Deep Features and Machine Learning Classifiers.
    Kang J; Ullah Z; Gwak J
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33810176
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Automatic detection of Gibbs artefact in MR images with transfer learning approach.
    Kocet L; Romarič K; Žibert J
    Technol Health Care; 2023; 31(1):239-246. PubMed ID: 36120746
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reduction of respiratory motion artifacts in gadoxetate-enhanced MR with a deep learning-based filter using convolutional neural network.
    Kromrey ML; Tamada D; Johno H; Funayama S; Nagata N; Ichikawa S; Kühn JP; Onishi H; Motosugi U
    Eur Radiol; 2020 Nov; 30(11):5923-5932. PubMed ID: 32556463
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Brain tumor classification for MR images using transfer learning and fine-tuning.
    Swati ZNK; Zhao Q; Kabir M; Ali F; Ali Z; Ahmed S; Lu J
    Comput Med Imaging Graph; 2019 Jul; 75():34-46. PubMed ID: 31150950
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Boundary-Weighted Domain Adaptive Neural Network for Prostate MR Image Segmentation.
    Zhu Q; Du B; Yan P
    IEEE Trans Med Imaging; 2020 Mar; 39(3):753-763. PubMed ID: 31425022
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Convolutional Neural Networks in Spinal Magnetic Resonance Imaging: A Systematic Review.
    Baur D; Kroboth K; Heyde CE; Voelker A
    World Neurosurg; 2022 Oct; 166():60-70. PubMed ID: 35863650
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modified-BRISQUE as no reference image quality assessment for structural MR images.
    Chow LS; Rajagopal H
    Magn Reson Imaging; 2017 Nov; 43():74-87. PubMed ID: 28716679
    [TBL] [Abstract][Full Text] [Related]  

  • 52. PET and MRI image fusion based on a dense convolutional network with dual attention.
    Li B; Hwang JN; Liu Z; Li C; Wang Z
    Comput Biol Med; 2022 Dec; 151(Pt B):106339. PubMed ID: 36459810
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Deep learning for patient-specific quality assurance: Identifying errors in radiotherapy delivery by radiomic analysis of gamma images with convolutional neural networks.
    Nyflot MJ; Thammasorn P; Wootton LS; Ford EC; Chaovalitwongse WA
    Med Phys; 2019 Feb; 46(2):456-464. PubMed ID: 30548601
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A novel biomedical image indexing and retrieval system via deep preference learning.
    Pang S; Orgun MA; Yu Z
    Comput Methods Programs Biomed; 2018 May; 158():53-69. PubMed ID: 29544790
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of Deep-Learning and Conventional Machine-Learning Methods for the Automatic Recognition of the Hepatocellular Carcinoma Areas from Ultrasound Images.
    Brehar R; Mitrea DA; Vancea F; Marita T; Nedevschi S; Lupsor-Platon M; Rotaru M; Badea RI
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32485986
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Convolutional neural network to predict the local recurrence of giant cell tumor of bone after curettage based on pre-surgery magnetic resonance images.
    He Y; Guo J; Ding X; van Ooijen PMA; Zhang Y; Chen A; Oudkerk M; Xie X
    Eur Radiol; 2019 Oct; 29(10):5441-5451. PubMed ID: 30859281
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Convolutional neural networks for skull-stripping in brain MR imaging using silver standard masks.
    Lucena O; Souza R; Rittner L; Frayne R; Lotufo R
    Artif Intell Med; 2019 Jul; 98():48-58. PubMed ID: 31521252
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Deep Automated Skeletal Bone Age Assessment Model with Heterogeneous Features Learning.
    Tong C; Liang B; Li J; Zheng Z
    J Med Syst; 2018 Nov; 42(12):249. PubMed ID: 30390162
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A trusted medical image super-resolution method based on feedback adaptive weighted dense network.
    Chen L; Yang X; Jeon G; Anisetti M; Liu K
    Artif Intell Med; 2020 Jun; 106():101857. PubMed ID: 32593391
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deep learning supported disease detection with multi-modality image fusion.
    Sangeetha Francelin Vinnarasi F; Daniel J; Anita Rose JT; Pugalenthi R
    J Xray Sci Technol; 2021; 29(3):411-434. PubMed ID: 33814482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.